版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列两个图形,一定相似的是()A.两个等腰三角形 B.两个直角三角形C.两个等边三角形 D.两个矩形2.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解3.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm4.若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cm B.4cm C.5cm D.6cm5.如图,若点P在反比例函数y=(k≠0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,若矩形PMON的面积为6,则k的值是()A.-3 B.3 C.-6 D.66.下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等7.如图,在正方形中,以为边作等边,延长分别交于点,连接与相交于点,给出下列结论:①;②;③;④;其中正确的是()A.①②③④ B.②③ C.①②④ D.①③④8.二次函数下列说法正确的是()A.开口向上 B.对称轴为直线C.顶点坐标为 D.当时,随的增大而增大9.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.10.用配方法解方程-4x+3=0,下列配方正确的是()A.=1 B.=1 C.=7 D.=411.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为(
)A.2.4m B.24m C.0.6m D.6m12.如图,在中,点,分别在,边上,,,若,,则线段的长为()A. B. C. D.5二、填空题(每题4分,共24分)13.若锐角满足,则__________.14.如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,…按此做法进行下去,其中弧的长为_______.15.如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.16.如图,已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则的值为_____.17.一支反比例函数,若,则y的取值范围是_____.18.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.三、解答题(共78分)19.(8分)解方程:2x2+x﹣6=1.20.(8分)已知抛物线的图象经过点(﹣1,0),点(3,0);(1)求抛物线函数解析式;(2)求函数的顶点坐标.21.(8分)如图,在中,,点在边上,经过点和点且与边相交于点.(1)求证:是的切线;(2)若,求的半径.22.(10分)如图,点D是AC上一点,BE//AC,AE分别交BD、BC于点F、G,若∠1=∠2,线段BF、FG、FE之间有怎样的关系?请说明理由.23.(10分)先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=1.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.24.(10分)如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.25.(12分)如图,梯形ABCD中,,点在上,连与的延长线交于点G.(1)求证:;(2)当点F是BC的中点时,过F作交于点,若,求的长.26.如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求⊙O的半径.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据相似三角形的判定方法一一判断即可;所应用判断方法:两角对应相等,两三角形相似.【详解】解:∵两个等边三角形的内角都是60°,
∴两个等边三角形一定相似,
故选C.【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.2、B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.3、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.4、C【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=2.5cm,c=10cm,解得:d=5.故线段d的长为5cm.故选:C.【点睛】本题主要考查成比例线段,解题突破口是根据定义ad=cb,将a,b及c的值代入计算.5、C【解析】设PN=a,PM=b,则ab=6,∵P点在第二象限,∴P(-a,b),代入y=中,得k=-ab=-6,故选C.6、D【解析】A、明天最高气温是随机的,故A选项错误;B、任意买一张动车票,座位刚好挨着窗口是随机的,故B选项错误;C、掷骰子两面有一次正面朝上是随机的,故C选项错误;D、对顶角一定相等,所以是真命题,故D选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D.【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.7、A【分析】根据等边三角形、正方形的性质求得∠ABE=30°,利用直角三角形中30°角的性质即可判断①;证得PC=CD,利用三角形内角和定理即可求得∠PDC,可求得∠BPD,即可判断②;求得∠FDP=15°,∠PBD=15°,即可证明△PDE∽△DBE,判断③正确;利用相似三角形对应边成比例可判断④.【详解】∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,∴,
∴;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=∠CPD===75°,∴∠BPD=∠BPC+∠CPD=60°+75°=135°,故②正确;
∵∠PDC=75°,∴∠FDP=∠ADC-∠PDC=90°-75°=15°,
∵∠DBA=45°,
∴∠PBD=∠DBA-∠ABE=45°-30°=15°,
∴∠EDP=∠EBD,
∵∠DEP=∠DEP,
∴△PDE∽△DBE,故③正确;
∵△PDE∽△DBE,∴,即,故④正确;综上:①②③④都是正确的.
故选:A.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.8、D【分析】根据解析式即可依次判断正确与否.【详解】∵a=-2∴开口向下,A选项错误;∵,∴对称轴为直线x=-1,故B错误;∵,∴顶点坐标为(-1,-4),故C错误;∵对称轴为直线x=-1,开口向下,∴当时,随的增大而增大,故D正确.故选:D.【点睛】此题考查二次函数的性质,掌握不同函数解析式的特点,各字母代表的含义,并熟练运用解题是关键.9、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.10、A【解析】用配方法解方程-4x+3=0,移项得:-4x=-3,配方得:-4x+4=1,即=1.故选A.11、D【解析】试题解析:作AN⊥EF于N,交BC于M,
∵BC∥EF,
∴AM⊥BC于M,
∴△ABC∽△AEF,
∴,
∵AM=0.6,AN=30,BC=0.12,
∴EF==6m.
故选D.12、C【解析】设,,所以,易证,利用相似三角形的性质可求出的长度,以及,再证明,利用相似三角形的性质即可求出得出,从而可求出的长度.【详解】解:设,,∴,∵,∴,∴,∴,∴,,∵,,∴,∵,∴,∴,设,,∴,∴,∴,∴,故选C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.二、填空题(每题4分,共24分)13、【分析】根据特殊角三角函数值,可得答案.【详解】解:由∠A为锐角,且,∠A=60°,
故答案为:60°.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.14、.【分析】连接,,,易求得垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题.【详解】连接,,
是上的点,
,
直线l解析式为,
,
为等腰直角三角形,即轴,
同理,垂直于x轴,
为圆的周长,
以为圆心,为半径画圆,交x轴正半轴于点,以为圆心,为半径画圆,交x轴正半轴于点,以此类推,
,
,
当时,
故答案为【点睛】本题考查了圆周长的计算,考查了从图中找到圆半径规律的能力,本题中准确找到圆半径的规律是解题的关键.15、(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).
连接MC,MD,
∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,
又∵MC为半径,
∴直线CD是⊙M的切线.故答案为:(2,0);相切.【点睛】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.16、.【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到S△OAC=,S△OBD=,再证明Rt△AOC∽Rt△OBD,然后利用相似三角形的性质得到的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△OAC=×1=,S△OBD=×|﹣5|=,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴=()2==,∴=.∴=.故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17、y<-1【分析】根据函数解析式可知当x>0时,y随x的增大而增大,求出当x=1时对应的y值即可求出y的取值范围.【详解】解:∵反比例函数,-4<0,∴当x>0时,y随x的增大而增大,当x=1时,y=-1,∴当,则y的取值范围是y<-1,故答案为:y<-1.【点睛】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性.18、【分析】根据侧面展开图,求出圆锥的底面半径和母线长,然后利用勾股定理求得圆锥的高.【详解】如下图,为圆锥的侧面展开图草图:∵侧面展开图是弧长为2π的半圆形∴2π=,其中表示圆锥的母线长解得:圆锥侧面展开图的弧长对应圆锥底面圆的周长∴2π=2πr,其中r表示圆锥底面圆半径解得:r=1∴根据勾股定理,h=故答案为:【点睛】本题考查圆锥侧面展开图,公式比较多,建议通过绘制侧面展开图的草图来分析得出公式.三、解答题(共78分)19、x1=1.5,x2=﹣2.【分析】利用因式分解法进行解方程即可.【详解】解:因式分解得:,可得或,解得:,【点睛】本题主要考察因式分解法解方程,熟练运用因式分解是关键.20、(1)y=x2﹣2x﹣3;(2)(1,-4)【分析】(1)将两点代入列出关于b和c的二元一次方程组,然后进行求解;(2)根据二次函数的顶点坐标的求法进行求解.【详解】解:(1)把(﹣1,0),(3,0)代入y=x2+bx+c(a≠0)得,解得∴所求函数的解析式为y=x2﹣2x﹣3,(2)抛物线的解析式为y=x2﹣2x﹣3,∴=﹣=1,∴抛物线的顶点坐标为(1,-4)考点:待定系数法求函数解析式、二次函数顶点坐标的求法.21、(1)见解析;(2)【分析】(1)连接,根据等腰三角形的性质得到,求得,根据三角形的内角和得到,于是得到是的切线;(2)连接,推出是等边三角形,得到,求得,得到,于是得到结论.【详解】(1)证明:连接,∵,∴,∵,∴,∴,∴,∴是的切线;(2)解:连接,∵,∴是等边三角形,∴,∴,∴,∴,∴的半径.【点睛】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22、BF2=FG·EF.【解析】由题意根据BE∥AC,可得∠1=∠E,然后有∠1=∠2,可得∠2=∠E,又由∠GFB=∠BFE,可得出△BFG∽△EFB,最后可得出BF2=FG•FE.【详解】解:BF2=FG·EF.证明:∵BE∥AC,∴∠1=∠E.∵∠1=∠2,∴∠2=∠E.又∵∠BFG=∠EFB,∴△BFG∽△EFB.∴,∴BF2=FG·EF.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是根据BE∥AC,得出∠1=∠E,进而判定△BFG∽△EFB.23、(1)详见解析;(2)99或2.【解析】(1)首先由题意可得a+c=b,将欢喜数展开,因为要证明“欢喜数”能被99整除,所以将展开式中100a拆成99a+a,这样展开式中出现了a+c,将a+c用b替代,整理出最终结果即可;(2)首先设出两个欢喜数m、n,表示出F(m)、F(n)代入F(m)﹣F(n)=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵为欢喜数,∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数”能被99整除;(2)设m=,n=(且a1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=2.∴若F(m)﹣F(n)=3,则m﹣n的值为99或2.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.24、(1)4;(2)y=2x+π-4(0<x≤2+4)【分析】(1)根据圆周角定理得到△AOB是等边三角形,求出⊙O的半径;
(2)过点O作OH⊥AB,垂足为H,先求出AH=BH=AB=2,再利用勾股定理得出OH的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,
∴∠AOB=60°,又OA=OB,
∴△AOB是等边三角形,
∴⊙O的半径是4;(2)解:过点O作OH⊥AB,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH==2∴y=×16π-×4×2+×4×x=2x+π-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省阳江市高新区2024-2025学年高一上学期11月期中考试 语文 含答案
- 《热媒系统清扫方案》课件
- 耳坠市场发展现状调查及供需格局分析预测报告
- 气体引燃器市场需求与消费特点分析
- 《方协议申请步骤》课件
- 眼用制剂市场洞察报告
- 细颈瓶产业规划专项研究报告
- 手推运货车产品入市调查研究报告
- 第二单元 【B卷·培优卷】(含答案解析)(安徽专用)
- 浴室用桶产业运行及前景预测报告
- 《笔算除法》四舍试商(教案)-四年级上册数学人教版
- 初中学生综评典型事例
- 英语老师家长会课件-图文
- 养殖鳗鱼技术培训课件
- Unit2WaystogotoschoolPartALet'slearn(课件)人教PEP版英语六年级上册
- 资产报废请示格式(3篇)
- 口腔每周工作总结简短
- 2023学年完整公开课版认识分号
- 学校宿舍楼建设工程施工组织设计方案
- 学前教育实训项目设计方案
- 员工培训小品剧本
评论
0/150
提交评论