版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第04讲6.2.3向量的数乘运算课程标准学习目标①了解向量数乘的概念。②理解并掌握向量数乘的运算律,会运用向量数乘的运算律进行向量运算。③理解并掌握向量共线定理及其判定方法。④能用坐标表示平面向量的数量积,会表示两个平面向量的夹角。⑤能用坐标表示平面向量共线、垂直的条件。1在熟悉课本知识的基础上,了解并充分掌握向量数乘的概念;2.在掌握向量加减与数乘定义的基础上,理解并掌握向量数乘的运算律,会运用向量数乘的运算律进行向量运算;3.准确理解并掌握向量共线定理及其判定方法;知识点01:向量的数乘(1)向量数乘的定义一般地,我们规定实数与向量的积是一个向量,这种运算叫做向量的数乘,记作.它的长度与方向规定如下:①②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.【即学即练1】(2023·全国·高一随堂练习)任作一向量,再作向量,.【答案】答案见解析【详解】由知,与同向,模长为模长的2倍,由此作出;由知,与方向相反,模长为模长的,由此作出;
(2)向量数乘的几何意义对于:①从代数角度看,是实数,是向量,它们的积仍然是向量.的条件是或.②从几何的角度看,对于长度来说,当时,意味着表示向量的有向线段在原方向或相反方向上伸长了倍;当时,意味着表示向量的有向线段在原方向或反方向上缩短了倍.实数与向量可以求积,但不能进行加减运算,如,都无意义.(3)向量数乘的运算律实数与向量的积满足下面的运算律:设、是实数,、是向量,则:①结合律:②第一分配律:③第二分配律:知识点02:向量的线性运算向量的加、减、数乘运算统称为向量的线性运算.向量线性运算的结果仍是向量.对于任意向量,,以及任意实数,,,恒有.知识点03:向量共线定理(1)内容:向量与非零向量共线,则存在唯一一个实数,.(2)向量共线定理的注意问题:①定理的运用过程中要特别注意.特别地,若,实数仍存在,但不唯一.②定理的实质是向量相等,应从大小和方向两个方面理解,借助于实数沟通了两个向量与的关系.③定理为解决三点共线和两直线平行问题提供了一种方法.要证三点共线或两直线平行,任取两点确定两个向量,看能否找到唯一的实数使向量相等即可.【即学即练2】(2023·全国·高一课堂例题)设,是平面内的一组基底,,,,求证:A,B,D三点共线.【答案】证明见解析【详解】证明:因为,所以与共线.又因为与有公共的起点A,所以A,B,D三点共线.题型01几何图形中用已知向量表示未知向量【典例1】(2023上·湖北黄石·高二阳新县第一中学校联考期中)如图,在四边形ABCD中,,设,,则等于(
)A. B.C. D.【答案】C【详解】因为,所以.故选:C【典例2】(2023下·福建福州·高一福建省连江第一中学校考期中)如图,在中,,则(
)A. B. C. D.【答案】A【详解】在中,,∴.故选:A.【典例3】(2022下·湖南长沙·高一湖南师大附中校考期末)中,,则(
)A. B.C. D.【答案】A【详解】,故选:A
【变式1】(2023下·上海嘉定·高一校考期末)已知是的边上的中线,若,则.(用表示)【答案】【详解】由题意知:.
故答案为:【变式2】(2023下·新疆阿克苏·高一校考阶段练习)在中,点为边的中点,记,则(
)A. B. C. D.【答案】C【详解】由题意可知,.故选:C【变式3】(2023下·四川攀枝花·高一统考期末)在中,为上一点,且,则(
)A. B.C. D.【答案】C【详解】
由题意知,,因为,且,所以,故答案为C.故选:C题型02平面向量的混合运算【典例1】(2023·高一课前预习)计算:(1);(2);(3);(4).【答案】(1)(2)(3)(4)【详解】(1);(2);(3);(4).【典例2】(2023下·重庆綦江·高一校考期中)化简为(
)A. B.C. D.【答案】D【详解】根据向量的四则运算可知,.故选:D【变式1】(2023·全国·高一课堂例题)计算:(1);(2).【答案】(1)(2)【详解】(1)原式.(2)原式.【变式2】(2023下·高一课时练习)计算:(1);(2).【答案】(1)(2)【详解】(1)原式.(2)原式题型03向量共线的判定【典例1】(2022·河南·校联考三模)已知、、均为非零向量,且,,则(
)A.与垂直 B.与同向 C.与反向 D.与反向【答案】C【详解】因为,,所以与同向,与反向,所以与反向.故选:C.【典例2】(2023·高一课时练习)设,是两个不共线的向量,关于向量,有①,;②,;③;,④;.其中,共线的有.(填序号)【答案】①②③【详解】①,共线;②,共线;③,共线;④和无法表示成,所以不共线.故答案为:①②③【典例3】(2023·全国·高一随堂练习)设,为不共线的非零向量,判断下列各题中的,向量是否共线.(1),;(2),;(3),.【答案】(1)共线(2)共线3)不共线【详解】(1),则有,即共线;(2),则有,即共线;(3)设,共线,则由共线向量基本定理,得存在,使,即,所以,所以共线,这与已知条件不共线矛盾,不共线.【变式1】(2023·全国·高一专题练习)对于非零向量,“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A【详解】对于非零向量,当时,,一定成立,即充分性成立;当时,,不一定满足,即必要性不成立.所以对于非零向量,“”是“”的充分不必要条件.故选:A【变式2】(2023·高一课时练习)已知、是两非零向量,且与共线,若非零向量与共线,则与必定.【答案】共线【详解】因为、是两非零向量,且与共线,所以,使得.又因为非零向量与共线,所以,使得.所以,.所以,与必定共线.故答案为:共线.【变式3】(2023·全国·高一随堂练习)判断下列各小题中的向量,是否共线:(1),;(2),(其中两个非零向量和不共线);(3),.【答案】(1)共线;(2)共线;(3)共线.【详解】(1),,所以,所以,共线.(2),,所以,所以,共线.(3)因为,,所以,所以.所以,共线.题型04利用向量共线证明线线平行【典例1】(2023下·广东汕头·高一校考期中)在四边形中,,,,则四边形的形状是()A.梯形 B.菱形C.平行四边形 D.矩形【答案】A【详解】因为,,,所以.所以.所以且,所以四边形为梯形..故选:A【典例2】(2022·高一课时练习)如图,设分别是梯形的对角线的中点.(1)试用向量的方法证明:;【答案】(1)证明见解析【详解】(1)分别为中点,,,;,可设,,又,,.【变式1】(2023·高一课时练习)四边形ABCD中,,,,试判断四边形ABCD的形状(其中,为不平行的非零向量).【答案】四边形ABCD为梯形.【详解】,,∴,所以四边形ABCD为梯形.【变式2】(2023·高一课时练习)设D、E、F分别是的三边BC、CA、AB上的点,且,,,则(
)A.与反向平行 B.与同向平行C.与反向平行 D.与不共线【答案】A【详解】因为,所以,因为,所以,因为,所以,,,,所以,所以与反向平行,故A正确,B错误;,所以与同向平行,故CD错误.故选:A题型05已知向量共线(平行)求参数【典例1】(2023下·山西运城·高一统考期中)已知向量,不共线,且向量与方向相同,则实数的值为(
)A.1 B. C.1或 D.1或【答案】A【详解】因为向量与方向相同,所以存在唯一实数,使,因为向量,不共线,所以,解得或(舍去),故选:A【典例2】(2023上·江西·高一统考期中)已知,为平面内向量的一组基底,,,若,则.【答案】【详解】由得,,解得.故答案为:.【典例3】(2023下·山西朔州·高一校考阶段练习)已知两个非零向量不共线,且与共线,求实数k的值.【答案】或.【详解】因为与共线,所以存在实数,使,即.由于不共线,所以.即实数k的值为或.【变式1】(2023上·山东泰安·高三统考阶段练习)已知向量是平面内的一组基底,若向量与共线,则的值为(
)A. B. C. D.【答案】D【详解】因为向量与共线,所以存在唯一实数,使,即,所以,因为向量是平面内的一组基底,所以,解得,,故选:D【变式2】(2023·全国·高三专题练习)已知,是两个不共线的平面向量,向量,,若,则有(
)A. B. C. D.【答案】C【详解】因为,所以设,因为,,所以,可得,所以,故选:C.【变式3】(2023·全国·高三专题练习)已知向量、不共线,且向量与平行,则实数.【答案】【详解】因为向量与平行,设,其中,因为向量、不共线,则,解得.故答案为:.题型06三点共线问题【典例1】(2023下·贵州遵义·高一校考阶段练习)已知不共线的向量,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D【答案】A【详解】对A,,所以,则三点共线,A正确;对B,,则不存在任何,使得,所以不共线,B错误;对C,,则不存在任何,使得,所以不共线,C错误;对D,,则不存在任何,使得,所以不共线,D错误;故选:A.【典例2】(2023下·安徽合肥·高一统考期中)设是不共线的两个向量,.若三点共线,则k的值为.【答案】【详解】因为三点共线,故,则,使得,又,故,则,解得,故答案为:【典例3】(2023上·江西·高二校联考开学考试)已知是平面内不共线的单位向量,是该平面内的点,且,,.(1)若,求;(2)若三点共线,求实数的值.【答案】(1)(2)【详解】(1),,.(2),,又三点共线,即共线,,解得:.【变式1】(2023下·上海浦东新·高一校考期中)设,是两个不共线向量,,,,若A,B,D三点共线,则实数p的值为.【答案】【详解】由题意,因为三点共线,所以共线,所以存在实数,使得,所以,,所以.故答案为:.【变式2】(2023·全国·高一随堂练习)如图,在中,点M为AB的中点,点N在BD上,.
求证:M,N,C三点共线.【答案】证明见解析【详解】设,则所以,又因为有公共起点C,所以M,N,C三点共线.【变式3】(2023下·山东泰安·高一校考阶段练习)如图,在中,.设.
(1)用表示;(2)若为内部一点,且.求证:三点共线,并指明点的具体位置.【答案】(1),(2)证明见解析,是的中点【详解】(1)依题意,,.-(2)由,又,所以,,故三点共线,且是的中点.
题型07利用向量共线定理求参数【典例1】(2023上·北京顺义·高三牛栏山一中校考期中)在中,,是直线上的一点,若则实数的值为(
)A. B. C. D.【答案】B【详解】因为,所以,又是直线上的一点,所以,又,所以,所以.故选:B【典例2】(2023·四川绵阳·四川省绵阳南山中学校考一模)如图,在中,,P为CD上一点,且满足,则m的值为.【答案】【详解】因为,即,所以,又所以,解得.故答案为:.【典例3】(2023下·四川绵阳·高一三台中学校考阶段练习)已知向量,不共线,且,,.(1)将用,表示;(2)若,求的值;【答案】(1)(2)【详解】(1)因为,,所以;(2)因为,,,所以,即,又向量,不共线,所以,解得,即的值为.【变式1】(2023下·江苏南通·高一校考期中)已知是两个不共线的向量,向量.若,则(
)A. B. C.2 D.【答案】A【详解】由题设且,故,则,可得.故选:A【变式2】(2023上·四川南充·高三四川省南部中学校考阶段练习)在平行四边形中,点E满足且,则实数.【答案】4【详解】由题意可得:,故答案为:4.【变式3】(2023下·山东日照·高一校考阶段练习)已知不共线,向量,,且,则的值为.【答案】【详解】由可设:,则,,解得:.故答案为:.题型08平面向量共线定理的推论【典例1】(2023下·河南省直辖县级单位·高一河南省济源第一中学校考阶段练习)如图,在中,,P是线段BD上一点,若,则实数m的值为(
)
A. B. C. D.【答案】A【详解】∵,∴,又,∴,∵B,P,D三点共线,∴,∴.故选:A.【典例2】(2023下·山东泰安·高一泰安一中校考期中)如图所示,在中,点是的中点,过点的直线分别交直线于不同的两点,若,则的值为(
)
A.2 B.3 C. D.5【答案】A【详解】因为点是的中点,所以,又因为所以,因为三点共线,所以,所以.故选:A【典例3】(2023·全国·高三专题练习)经过的重心G的直线与OA,OB分别交于点P,Q,设,.(1)证明:为定值;(2)求m+n的最小值.【答案】(1)证明见解析(2)【详解】(1)设,因为的重心是G点,所以,,,因为G,P,Q三点共线,所以存在,使得,即,所以有;(2)因为,所以,当且仅当时取等号,即当时取等号,所以m+n的最小值为.【变式1】(2023上·江西吉安·高三吉安一中校考期中)中,为上一点且满足,若为上一点,且满足,为正实数,则下列结论正确的是(
)A.的最小值为 B.的最大值为1C.的最大值为16 D.的最小值为4【答案】D【详解】AB选项,因为,所以,故,因为三点共线,设,即,故,令,故,为正实数,由基本不等式得,解得,当且仅当时,等号成立,所以的最大值为,AB错误;CD选项,,当且仅当,即时,等号成立,C错误,D正确.故选:D【变式2】(2023上·河南焦作·高三统考开学考试)在中,,E是线段AD上的动点,设,则.【答案】2【详解】如图所示,由题意知,因为A,E,D三点共线,所以,所以.
故答案为:2.【变式3】(2023下·陕西西安·高一西安市铁一中学校考期中)如图,已知点是的重心,若过的重心,且,,,(,),试求的最小值.【答案】【详解】∵是的重心,∴是边上的中线,,∴,∴,又∵,(,),∴,,∴,又∵,,三点共线,∴.又∵,,∴由基本不等式,有,当且仅当,即,时,等号成立,∴的最小值为.A夯实基础B能力提升C综合素养A夯实基础一、单选题1.(2023·云南大理·统考一模)在中,,则(
)A. B. C. D.【答案】C【分析】根据向量的线性运算即可求解.【详解】∵,∴,故选:C.2.(2023上·北京海淀·高二校考阶段练习)已知向量,那么等于(
)A. B. C. D.【答案】C【分析】根据向量混合运算即可.【详解】,故选:C.3.(2023·全国·高三专题练习)设是非零向量,λ是非零实数,下列结论中正确的是(
)A.与的方向相反 B.与的方向相同C. D.【答案】B【分析】由平面向量的基本概念及数乘运算一一判定即可.【详解】对于A,当时,与的方向相同,当时,与的方向相反,故A不正确;对于B,显然,即B正确;对于C,,由于与1的大小不确定,故与的大小关系不确定,故C不正确;对于D,是向量,而表示长度,两者不能比较大小,故D不正确.故选:B4.(2023下·安徽马鞍山·高一马鞍山市红星中学校考阶段练习)在△OAB中,P为线段AB上的一点,,且,则(
)A. B.C. D.【答案】A【分析】根据向量的线性运算即可求解.【详解】,所以,故选:A5.(2023下·江苏镇江·高一扬中市第二高级中学校考期中)设是平面内的一组基底,,则(
)A.三点共线 B.三点共线C.三点共线 D.三点共线【答案】C【分析】根据向量共线定理设出方程,若方程无解,则三点不共线,从而得到ABD错误,C正确.【详解】A选项,设,则,无解,故三点不共线,A错误;B选项,设,则,无解,故三点不共线,B错误;C选项,,,故,故三点共线,C正确;D选项,,设,则,无解,故三点不共线,D错误.故选:C6.(2023下·陕西榆林·高二校联考期中)已知是平面内不共线的两个向量,且,,若,则实数(
)A. B. C.6 D.【答案】D【分析】根据向量平行的相关知识,结合平面向量基本定理即可求解.【详解】由,得,所以,则,解得.故选:D7.(2022下·河南安阳·高一安阳县第一高级中学校考阶段练习)已知向量,不共线,若向量与向量共线,则的值为(
)A. B.0或 C.0或1 D.0或3【答案】A【分析】根据向量共线的条件,代入化简,对应系数相等【详解】因为与共线,可设,即,因为,不共线,所以所以.故选:A.8.(2022下·安徽宣城·高二安徽省宣城中学统考期末)如图,在中,点是线段上一点,若,则实数的值为(
)A. B. C. D.【答案】C【分析】利用向量共线设,,从而得到,得到方程组,求出.【详解】因为三点共线,所以设,即,整理得:,因为,所以,解得:故选:C二、多选题9.(2023下·黑龙江齐齐哈尔·高一齐齐哈尔中学校考期中)如图在中,AD、BE、CF分别是边BC、CA、AB上的中线,且相交于点G,则下列结论正确的是(
)
A. B.C. D.【答案】BC【分析】由条件可知为的重心,由重心的性质逐一判定即可.【详解】由条件可知为的重心,对于A,由重心的性质可得,所以,故A错误;对于B,由重心的性质可得,所以,故B正确;对于D,故D错误;对于C,,,,故C正确.故选:BC.10.(2023上·重庆江北·高二校考开学考试)设点M是所在平面内一点,则下列说法正确的是(
)A.若,则点M是BC的中点B.若,则点M是的重心C.若,则点M,B,C三点共线D.若,则【答案】ACD【分析】根据平面向量的线性运算法则,以及重心的性质,逐项判定,即可求解.【详解】对于A中,如图所示,根据向量的平行四边形法则,可得,若,可得M为BC的中点,所以A正确;
对于B中,若M为的重心,则满足,即,所以B不正确;对于C中,由,可得,即,所以M,B,C三点共线,所以C正确;对于D中,如图所示,由,
可得,所以D正确.故选:ACD三、填空题11.(2023上·湖南邵阳·高三校考阶段练习)如图,在平行四边形ABCD中,E是对角线AC上靠近点的三等分点,点F为BE的中点,若,则.【答案】【分析】利用平面向量的线性运算计算即可.【详解】,所以,,.故答案为:.12.(2023下·河北石家庄·高一校考期中)设是内部一点,且,则.【答案】【分析】先作出草图,然后分析出的位置,先考虑长度的比值,最后即可得到面积的比值.【详解】设为的中点,如图所示,连接,则.又,所以,即为的中点,则,,即.故答案为:.四、解答题13.(2023上·江苏徐州·高三校考阶段练习)在中,E为AC的中点,D为边BC上靠近点B的三等分点.(1)分别用向量,表示向量,;(2)若点N满足,证明:B,N,E三点共线.【答案】(1),(2)证明见解析【详解】(1)因为E为AC的中点,D为边BC上靠近点B的三等分点,所以,则,.(2)因为,所以,则,所以,即,所以,又因为有公共点,所以,,三点共线.
14.(2023·全国·高一随堂练习)已知向量,(三点不共线),判断下列各题中的点是否在直线上.(1);(2);(3).【答案】(1)在(2)不在(3)不在【详解】(1)因为向量,(三点不共线),则,可作为该平面的一个基底,所以存在,使得任一向量满足,当时,,则,所以,则,故点在直线上;当点在直线上时,则存在,使得,所以,则,又,所以,则;所以是点在直线上的充要条件.对于,显然,所以点在直线上.(2)对于,显然,所以点不在直线上(3)对于,显然,所以点不在直线上B能力提升1.(2023上·天津南开·高三南开中学校考阶段练习)是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,若,,且,则(
).A. B. C. D.【答案】A【详解】由题设,所以,即,又,故.故选:A2.(2023上·安徽安庆·高三安徽省怀宁县新安中学校考阶段练习)已知是三角形所在平面内一定点,动点满足,则点轨迹一定通过三角形的(
)A.内心 B.外心 C.垂心 D.重心【答案】D【详解】记为的中点,连接,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023六年级数学上册 六 百分数第7课时 用方程解百分数问题 2列方程解决稍复杂的百分数实际问题(2)教学实录 苏教版
- 文明礼仪演讲稿模板集合5篇
- 物理教研组工作计划三篇
- 五年级体育下册 第十七课 游戏课:踏石过河、攻关教学实录
- 第6课 拉拉手交朋友 一年级道德与法治上册(2024版)教学实录
- 第3单元第11课《赶赴火场-“系统时间”检测模块的应用》教学实录2023-2024学年清华大学版(2012)初中信息技术九年级下册
- 邀请活动的邀请函合集七篇
- 圣诞节活动总结范文5篇
- -转正述职报告
- 后勤年终工作总结15篇
- 食品安全检测合作合同
- 养殖场转让写合同范例
- 广东省广州市天河区2023-2024学年高一上学期期末考试数学试卷(解析版)
- 2025年统编版高考政治一轮复习:选择性必修1、2、3共3册必背考点知识点汇编
- 《灭火应急疏散预案》课件
- 【高分复习笔记】孙广仁《中医基础理论》(第9版)笔记与考研真题详解
- 2024社区市民学校工作计划社区市民教育工作计划
- 自然辩证法论述题146题带答案(可打印版)
- 离婚协议书模板可打印(2024版)
- 七年级语文下册专项练习知识(对联)
- 广东省广州市海珠区2023-2024学年五年级上学期1月期末语文试题
评论
0/150
提交评论