2025届江苏省南通市海门市数学九上期末质量跟踪监视试题含解析_第1页
2025届江苏省南通市海门市数学九上期末质量跟踪监视试题含解析_第2页
2025届江苏省南通市海门市数学九上期末质量跟踪监视试题含解析_第3页
2025届江苏省南通市海门市数学九上期末质量跟踪监视试题含解析_第4页
2025届江苏省南通市海门市数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南通市海门市数学九上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)2.如图,为的直径,为上一点,弦平分,交于点,,,则的长为()A.2.5 B.2.8 C.3 D.3.23.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和54.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为(

)A.2.4m B.24m C.0.6m D.6m5.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是()A.(2,0) B.(-3,0) C.(-2,0) D.(3,0)6.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是().A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<27.计算的结果是A.﹣3 B.3 C.﹣9 D.98.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A. B. C. D.9.如图,平行于x轴的直线与函数y1=(a>1,x>1),y2=(b>1.x>1)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣310.下列方程中有一个根为﹣1的方程是()A.x2+2x=0 B.x2+2x﹣3=0 C.x2﹣5x+4=0 D.x2﹣3x﹣4=0二、填空题(每小题3分,共24分)11.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.12.如图,在反比例函数的图象上任取一点P,过P点分别作x轴,y轴的垂线,垂足分别为M,N,那么四边形PMON的面积为_____.13.如图,是等腰直角三角形,,以BC为边向外作等边三角形BCD,,连接AD交CE于点F,交BC于点G,过点C作交AB于点下列结论:;∽;;则正确的结论是______填序号14.如图,⊙的半径于点,连接并延长交⊙于点,连接.若,则的长为___.15.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.16.在Rt△ABC中,∠ACB=90°,若tanA=3,AB=,则BC=___17.已知△ABC,D、E分别在AC、BC边上,且DE∥AB,CD=2,DA=3,△CDE面积是4,则△ABC的面积是______18.如图将矩形绕点顺时针旋转得矩形,若,,则图中阴影部分的面积为__________.三、解答题(共66分)19.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?20.(6分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)21.(6分)如图,点为上一点,点在直径的延长线上,且,过点作的切线,交的延长线于点.判断直线与的位置关系,并说明理由;若,求:①的半径,②的长.22.(8分)已知二次函数y1=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m,n的值,(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,若点B与点M(﹣4,6)关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出y1>y2时x的取值范围.23.(8分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)24.(8分)某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?25.(10分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).26.(10分)如图,在△ABC中,AB=,∠B=45°,.求△ABC的周长.

参考答案一、选择题(每小题3分,共30分)1、A【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.2、B【分析】连接BD,CD,由勾股定理求出BD的长,再利用,得出,从而求出DE的长,最后利用即可得出答案.【详解】连接BD,CD∵为的直径∵弦平分即解得故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.3、B【解析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【详解】∵二次函数y=(x+1)2-4,对称轴是:x=-1∵a=-1>0,∴x>-1时,y随x的增大而增大,x<-1时,y随x的增大而减小,由图象可知:在-2≤x≤2内,x=2时,y有最大值,y=(2+1)2-4=5,x=-1时y有最小值,是-4,故选B.【点睛】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.4、D【解析】试题解析:作AN⊥EF于N,交BC于M,

∵BC∥EF,

∴AM⊥BC于M,

∴△ABC∽△AEF,

∴,

∵AM=0.6,AN=30,BC=0.12,

∴EF==6m.

故选D.5、D【分析】求出点(-1,0)关于直线的对称点,对称点的坐标即为图象与轴的另一个交点坐标.【详解】由题意得,另一个交点与交点(-1,0)关于直线对称设另一个交点坐标为(x,0)则有解得另一个交点坐标为(3,0)故答案为:D.【点睛】本题考查了二次函数的对称问题,掌握轴对称图象的性质是解题的关键.6、D【分析】由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的x的取值范围即可.【详解】∵二次函数y=ax1+bx+c(a<0)的图象经过点(1,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<1.故选D.7、B【分析】利用二次根式的性质进行化简即可.【详解】=|﹣3|=3.故选B.8、A【解析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.9、A【分析】△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】设A(,m),B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=3,则a﹣b=2.故选A.【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A、B两点坐标,表示出相应线段长度即可求解问题.10、D【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题(每小题3分,共24分)11、【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.【详解】一辆向左转,一辆向右转的情况有两种,则概率是.【点睛】本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.12、1【分析】设出点P的坐标,四边形PMON的面积等于点P的横纵坐标的积的绝对值,把相关数值代入即可.【详解】设点P的坐标为(x,y),∵点P的反比例函数的图象上,∴xy=﹣1,作轴于,作轴于,∴四边形PMON为矩形,∴四边形PMON的面积为|xy|=1,故答案为1.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.13、②③④【分析】根据题意证明∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC即可证明②正确,①错误,在△AEF中利用特殊三角函数即可证明③正确,在Rt△AOC中,利用即可证明④正确.【详解】解:由题可知,∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC,∴∠ACD=150°,∴∠CDA=∠CAD=15°,∴∠FCG=∠BDG=45°,∴,②正确,①错误,∵易证∠FAE=30°,设EF=x,则AE=CE=,∴,③正确,设CH与AD交点为O,易证∠FCO=30°,设OF=y,则CF=2y,由③可知,EF=()y,∴AF=()y,在Rt△AOC中,.故②③④正确.【点睛】本题考查了相似三角形的判定,特殊的直角三角形,三角函数的简单应用,难度较大,熟知特殊三角函数值是解题关键.14、【详解】解:连接BE∵⊙的半径,AB=2∴且,若设⊙的半径为,则.在△ACO中,根据勾股定理有,即,解得:.∴.∵是⊙的直径,∴.故答案为:【点睛】在与圆的有关的线段的计算中,一定要注意各种情况下构成的直角三角形,有了直角三角形就有可能用勾股定理、三角函数等知识点进行相关计算.本题抓住由半径、弦心距、半弦构成的直角三角形和半圆上所含的直角三角形,三次利用勾股定理并借助方程思想解决问题.15、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.16、1【分析】由tanA==1可设BC=1x,则AC=x,依据勾股定理列方程求解可得.【详解】∵在Rt△ABC中,tanA==1,∴设BC=1x,则AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(负值舍去),则BC=1,故答案为:1.【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.17、25【分析】根据DE∥AB得到△CDE∽△CAB,再由CD和DA的长度得到相似比,从而确定△ABC的面积.【详解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴,又∵△CDE面积是4,∴,即,∴△ABC的面积为25.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的面积之比等于相似比的平方.18、【分析】连接BD,BF,根据S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE即可得出答案.【详解】如图,连接BD,BF,在矩形ABCD中,∠A=90°,AB=3,AD=BC=2,∴BD=,S矩形ABCD=AB×BC=3×2=6∵矩形BEFG是由矩形ABCD绕点B顺时针旋转90°得到的∴BF=BD=,∠DBF=90°,∠CBE=90°,S矩形BEFG=S矩形ABCD=6则S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE=S矩形ABCD+S扇形BDF+S矩形BEFG-S矩形ABCD-S扇形BCE==故答案为:.【点睛】本题考查了与扇形有关的面积计算,熟练掌握扇形面积公式,将图形进行分割是解题的关键.三、解答题(共66分)19、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.20、4秒【分析】作AB⊥CF于B,根据方向角、勾股定理求出AB的长,根据题意比较得到消防车的警报声对听力测试是否会造成影响;求出造成影响的距离,根据速度计算即可.【详解】解:作AB⊥CF于B,由题意得:∠ACB=60°,AC=120米,则∠CAB=30°∴米,∴米,∵<110,∴消防车的警报声对学校会造成影响,造成影响的路程为米,∵秒,∴对学校的影响时间为4秒.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.21、(1)直线与相切;见解析(2)①3;②6.【分析】(1)首先由圆的性质得出,然后由圆内接直角三角形得出,,进而得出,即可判定其相切;(2)①首先根据根据元的性质得出,,进而可判定,即可得出半径;②首先由OP、OB得出OC,然后由切线性质得出,再由判定进而利用相似性质构建方程,即可得解.【详解】直线与相切;理由:连接,,,是的直径,,,,,即,为上的一点,直线与相切;①,,,,,,,圆的半径为;②,,∵过点作的切线交的延长线于点,,,即【点睛】此题主要考查直线和圆的位置关系以及相似三角形的判定与性质,熟练掌握。即可解题.22、(1)1,;(1)y=x+4;(3)x<﹣3或x>1.【分析】(1)将点P(-3,1)代入二次函数解析式得出3m﹣n=8,然后根据对称轴过点(-1,0)得出对称轴为x=-1,据此求出m的值,然后进一步求出n的值即可;(1)根据一次函数经过点P(﹣3,1),得出1=﹣3k+b,且点B与点M(﹣4,6)关于x=﹣1对称,所以B(1,6),所以6=1k+b,最后求出k与b的值即可;(3)y1>y1,则说明y1的函数图像在y1函数图像上方,据此根据图像直接写出范围即可.【详解】(1)由二次函数经过点P(﹣3,1),∴1=9﹣3m+n,∴3m﹣n=8,又∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴对称轴为x=﹣1,∴﹣=﹣1,∴m=1,∴n=﹣1;(1)∵一次函数经过点P(﹣3,1),∴1=﹣3k+b,∵点B与点M(﹣4,6)关于x=﹣1对称,∴B(1,6),∴6=1k+b,∴k=1,b=4,∴一次函数解析式为y=x+4;(3)由图象可知,x<﹣3或x>1时,y1>y1.【点睛】本题主要考查了二次函数的综合运用,熟练掌握相关概念是解题关键.23、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24、(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x元,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论