湖北省省直辖县2025届九上数学期末调研试题含解析_第1页
湖北省省直辖县2025届九上数学期末调研试题含解析_第2页
湖北省省直辖县2025届九上数学期末调研试题含解析_第3页
湖北省省直辖县2025届九上数学期末调研试题含解析_第4页
湖北省省直辖县2025届九上数学期末调研试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省省直辖县2025届九上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个点为(3,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=﹣1,x2=1 D.x1=3,x2=﹣52.二次函数的顶点坐标是()A.(-2,3) B.(-2,-3) C.(2,3) D.(2,-3)3.方程x2﹣5=0的实数解为()A. B. C. D.±54.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A.12πcm2 B.15πcm2 C.18πcm2 D.24πcm25.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率6.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则的度数为()A.24° B.56° C.66° D.76°7.抛物线的顶点为,与轴交于点,则该抛物线的解析式为()A. B.C. D.8.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1 C.与x轴有两个交点 D.顶点坐标是(1,2)9.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A. B.C. D.10.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB二、填空题(每小题3分,共24分)11.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)

12.如图,在等腰中,,点是以为直径的圆与的交点,若,则图中阴影部分的面积为__________.13.在中,,,在外有一点,且,则的度数是__________.14.如图,在中,,按以下步骤作图:在上分别截取使分别以为圆心,以大于的长为半径作弧,两弧在内交于点③作射线交于点,则_______.15.计算:2sin30°+tan45°=_____.16.如图,矩形中,,,是边上的一点,且,点在矩形所在的平面中,且,则的最大值是_________.17.如图是反比例函数在第二象限内的图像,若图中的矩形OABC的面积为2,则k=________.18.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为_____.三、解答题(共66分)19.(10分)如图,正方形的对角线、相交于点,过点作的平行线,过点作的平行线,它们相交于点.求证:四边形是正方形.20.(6分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当时,求与之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?21.(6分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.22.(8分)4月23日,为迎接“世界读书日”,某书城开展购书有奖活动.顾客每购书满100元获得一次摸奖机会,规则为:一个不透明的袋子中装有4个小球,小球上分别标有数字1,2,3,4,它们除所标数字外完全相同,摇匀后同时从中随机摸出两个小球,则两球所标数字之和与奖励的购书券金额的对应关系如下:两球所标数字之和34567奖励的购书券金额(元)00306090(1)通过列表或画树状图的方法计算摸奖一次获得90元购书券的概率;(2)书城规定:如果顾客不愿意参加摸奖,那么可以直接获得30元的购书券.在“参加摸奖”和“直接获得购书券”两种方式中,你认为哪种方式对顾客更合算?请通过求平均教的方法说明理由.23.(8分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.24.(8分)阅读下面材料:学习函数知识后,对于一些特殊的不等式,我们可以借助函数图象来求出它的解集,例如求不等式x﹣3>的解集,我们可以在同一坐标系中,画出直线y1=x﹣3与函数y2=的图象(如图1),观察图象可知:它们交于点A(﹣1,﹣1),B(1,1).当﹣1<x<0,或x>1时,y1>y2,即不等式x﹣3>的解集为﹣1<x<0,或x>1.小东根据学习以上知识的经验,对求不等式x3+3x2﹣x﹣3>0的解集进行了探究.下面是小东的探究过程,请补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;x>0时,原不等式转化为x2+3x﹣1>;当x<0时,原不等式转化为______;(2)构造函数,画出图象:设y3=x2+3x﹣1,y1=,在同一坐标系(图2)中分别画出这两个函数的图象.(3)借助图象,写出解集:观察所画两个函数的图象,确定两个函数图象交点的横坐标,结合(1)的讨论结果,可知:不等式x3+3x2﹣x﹣3>0的解集为______.25.(10分)有1张看上去无差别的卡片,上面分别写着1、2、1.随机抽取1张后,放回并混在一起,再随机抽取1张.(I)请你用画树状图法(或列表法)列出两次抽取卡片出现的所有可能结果;(Ⅱ)求两次抽取的卡片上数字之和为偶数的概率.26.(10分)已知关于x的一元二次方程有两个不相等的实数根,且为正整数,求的值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用抛物线的对称性确定抛物线与x轴的另一个点为(﹣1,0),然后利用抛物线与x轴的交点问题求解.【详解】解:∵抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个点为(1,0),∴抛物线与x轴的另一个点为(﹣1,0),∴关于x的一元二次方程x2﹣2x+m=0的两个实数根是x1=﹣1,x2=1.故选:A.【点睛】本题考查了抛物线与轴的交点:把求二次函数,,是常数,与轴的交点坐标问题转化为解关于的一元二次方程.也考查了二次函数的性质.2、B【分析】直接根据二次函数的顶点式进行解答即可.【详解】解:∵二次函数的顶点式为y=-2(x+2)2−3,

∴其顶点坐标为:(−2,−3).

故选:B.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点坐标特征是解答此题的关键.3、C【分析】利用直接开平方法求解可得.【详解】解:∵x2﹣5=0,∴x2=5,则x=,故选:C.【点睛】本题考查解方程,熟练掌握计算法则是解题关键.4、B【解析】试题分析:∵底面周长是6π,∴底面圆的半径为3cm,∵高为4cm,∴母线长5cm,∴根据圆锥侧面积=底面周长×母线长,可得S=×6π×5=15πcm1.故选B.考点:圆锥侧面积.5、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.6、C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【详解】∵AB是⊙O的直径∴∵∠BAD=24°∴又∵∴=66°故答案为:C.【点睛】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°7、A【分析】设出抛物线顶点式,然后将点代入求解即可.【详解】解:设抛物线解析式为,将点代入得:,解得:a=1,故该抛物线的解析式为:,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.8、D【解析】试题解析:二次函数y=(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选D.9、A【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:,图2中的面积为:,则故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.10、D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.二、填空题(每小题3分,共24分)11、或【解析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.12、【分析】取AB的中点O,连接OD,根据圆周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解.【详解】取AB的中点O,连接OD,∵在等腰中,,,∴,,∴,∴阴影部分的面积扇形BOD的面积,,故答案为:.【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键.13、、【分析】由,可知A、C、B、M四点共圆,AB为圆的直径,则是弦AC所对的圆周角,此时需要对M点的位置进行分类讨论,点M分别在直线AC的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC=∠ACB=45°,∵点在外,且,即∠AMB=90°∵∴A、C、B、M四点共圆,①如图,当点M在直线AC的左侧时,,∴;②如图,当点M在直线AC的右侧时,∵,∴,故答案为:135°或45°.【点睛】本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A、C、B、M四点共圆.14、【分析】由已知可求BC=6,作,由作图知平分,依据知,再证得可知BE=2,设,则,在中得,解之可得答案.【详解】解:如图所示,过点作于点,由作图知平分,,,,,,,∴,∵在中,,,设,则在中∴,解得:,即,故选:.【点睛】本题综合考查了角平分线的尺规作图及角平分线的性质、勾股定理等知识,利用勾股定理构建方程求解是解题关键.15、1.【分析】根据解特殊角的三角函数值即可解答.【详解】原式=1×+1=1.【点睛】本题考查特殊角的三角函数值,解题的关键是牢记这些特殊三角函数值.16、5+.【分析】由四边形是矩形得到内接于,利用勾股定理求出直径BD的长,由确定点P在上,连接MO并延长,交于一点即为点P,此时PM最长,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【详解】连接BD,∵四边形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中点O为圆心5为半径作,∵,∴点P在上,连接MO并延长,交于一点即为点P,此时PM最长,且OP=5,过点O作OH⊥AD于点H,∴AH=AD=4,∵AM=2,∴MH=2,∵点O、H分别为BD、AD的中点,∴OH为△ABD的中位线,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案为:5+.【点睛】此题考查矩形的性质,勾股定理,圆内接四边形的性质,确定PM的位置是重点,再分段求出OM及OP的长,即可进行计算.17、-1【解析】解:因为反比例函数,且矩形OABC的面积为1,所以|k|=1,即k=±1,又反比例函数的图象在第二象限内,k<0,所以k=﹣1.故答案为﹣1.18、﹣1<x<1.【分析】根据图象直接可以得出答案【详解】如图,从二次函数y=x2﹣2x﹣1的图象中可以看出函数值小于0时x的取值范围为:﹣1<x<1【点睛】此题重点考察学生对二次函数图象的理解,抓住图象性质是解题的关键三、解答题(共66分)19、见解析【分析】根据已知条件先证明四边形OBEC是平行四边形,再证明∠BOC=90°,OC=OB即可判定四边形OBEC是正方形.【详解】∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∴,∴四边形是矩形,∵,∴四边形是正方形.【点睛】本题考查正方形的性质和判定,解题的关键是熟练掌握正方形的性质和判定.20、(1);(2);(3)甲加工或时,甲与乙加工的零件个数相等.【解析】(1)观察图象可得零件总个数,观察AB段可得甲机器的速度,观察BC段结合甲的速度可求得乙的速度;(2)设当时,与之间的函数解析式为,利用待定系数法求解即可;(3)分乙机器出现故障前与修好故障后两种情况分别进行讨论求解即可.【详解】(1)观察图象可知一共加工零件270个,甲机器每小时加工零件:(90-50)÷(3-1)=20个,乙机器排除故障后每小时加工零件:(270-90)÷(6-3)-20=40个,故答案为:270,20,40;设当时,与之间的函数解析式为把,,代入解析式,得解得设甲加工小时时,甲与乙加工的零件个数相等,乙机器出现故障时已加工零件50-20=30个,,;乙机器修好后,根据题意则有,,答:甲加工或时,甲与乙加工的零件个数相等.【点睛】本题考查了一次函数的应用,弄清题意,读懂函数图象,理清各量间的关系是解题的关键.21、(1)②;(2)±1;(3)<<或<<【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,,∵,∴要使面积最小,则PM最小,即OP最小即可,当OP⊥时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:,故EF=1.在△AEF中,根据勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F点代入y=kx可得:.②当k>0时,同理可得k=1.故综上:.(3)记直线与x、y轴的交点为点D、C,则,,①当⊙B在直线CD右侧时,如下图所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直线与⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半径为,∴.当直线CD与⊙B相切时,,因为直线CD与⊙B相离,故BN>,此时BD>2,所以OB=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此时可利用勾股定理算得BD<,<=,则<<.②当⊙B在直线CD左侧时,同理可得:<<.故综上:<<或<<.【点睛】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.22、(1);(2)在“参加摸球”和“直接获得购书券”两种方式中,我认为选择“参加摸球”对顾客更合算,理由见解析.【分析】(1)根据题意,列出表格,然后利用概率公式求概率即可;(2)先根据(1)中表格计算出两球数字之和的各种情况对应的概率,然后计算出摸球一次平均获得购书券金额,最后比较大小即可判断.【详解】解:(1)列表如下:第1球第2球12341234由上表可知,共有12种等可能的结果.其中“两球数字之和等于7”有2种,∴(获得90元购书券).(2)由(1)中表格可知,两球数字之和的各种情况对应的概率如下:数字之和34567获奖金额(元)00306090相应的概率∴摸球一次平均获得购书券金额为元∵,∴在“参加摸球”和“直接获得购书券”两种方式中,我认为选择“参加摸球”对顾客更合算.【点睛】此题考查的是求概率问题,掌握用列表法和概率公式求概率是解决此题的关键.23、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.24、(2)x2+3x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论