版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京雨花台区七校联考2025届九上数学期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切2.如图是二次函数y=ax2+bx+c(a≠0)图象如图所示,则下列结论,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正确的有()A.1个 B.2个 C.3个 D.43.在实数3.14,﹣π,,﹣中,倒数最小的数是()A. B. C.﹣π D.3.144.如图,⊙中,,则等于()A. B. C. D.5.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.2 B. C. D.6.如图是抛物线y=a(x+1)2+2的一部分,该抛物线在y轴右侧部分与x轴的交点坐标是()A.(,0) B.(1,0) C.(2,0) D.(3,0)7.计算()A. B. C. D.8.关于二次函数y=2x2+4,下列说法错误的是()A.它的开口方向向上 B.当x=0时,y有最大值4C.它的对称轴是y轴 D.顶点坐标为(0,4)9.下列事件中是必然事件的是()A.﹣a是负数 B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上 D.平移后的图形与原来的图形对应线段相等10.已知,则锐角的取值范围是()A. B. C. D.11.若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A. B. C. D.12.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分二、填空题(每题4分,共24分)13.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm2(结果保留π).14.已知圆的半径为,点在圆外,则长度的取值范围为___________.15.如图,已知正六边形内接于,若正六边形的边长为2,则图中涂色部分的面积为______.16.一元二次方程的解为________.17.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.18.已知点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,则a+b的值为_____.三、解答题(共78分)19.(8分)如图,已知是等边三角形的外接圆,点在圆上,在的延长线上有一点,使,交于点.(1)求证:是的切线(2)若,求的长20.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).21.(8分)某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为元()时,每周的销售量(件)满足关系式:.(1)若每周的利润为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当时,求每周获得利润的取值范围.22.(10分)先化简,再选择一个恰当的数代入后求值.23.(10分)已知如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),B(﹣1,0),与y轴交于点C,连接AC,点P是直线AC上方的抛物线上一动点(异于点A,C),过点P作PE⊥x轴,垂足为E,PE与AC相交于点D,连接AP.(1)求点C的坐标;(2)求抛物线的解析式;(3)①求直线AC的解析式;②是否存在点P,使得△PAD的面积等于△DAE的面积,若存在,求出点P的坐标,若不存在,请说明理由.24.(10分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d=;弯折后A、B两点的距离x的取值范围是;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”);若面积S=1.5时,点C将线段AB分成两段的长分别是;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h=,该函数图象与⊙O的位置关系是.(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.25.(12分)如图,的顶点是双曲线与直线在第二象限的交点.轴于,且.(1)求反比例函数的解析式;(2)直线与双曲线交点为、,记的面积为,的面积为,求26.已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.
参考答案一、选择题(每题4分,共48分)1、A【解析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【详解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1与⊙O2相交.
故选A.【点睛】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.2、B【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y轴交于负半轴,则c<1,故①正确;②对称轴x1,则2a+b=1.故②正确;③由图可知:当x=1时,y=a+b+c<1.故③错误;④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.综上所述:正确的结论有2个.故选B.【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3、A【解析】先根据倒数的定义计算,再比较大小解答.【详解】解:在3.14,﹣π,,﹣中,倒数最小的数是两个负数中一个,所以先求两个负数的倒数:﹣π的倒数是﹣≈﹣0.3183,﹣的倒数是﹣≈﹣4472,所以﹣>﹣,故选:A.【点睛】本题考查了倒数的定义.解题的关键是掌握倒数的定义,会比较实数的大小.4、C【分析】直接根据圆周角定理解答即可.【详解】解:∵∠ABC与∠AOC是一条弧所对的圆周角与圆心角,∠ABC=45°,
∴∠AOC=2∠ABC=2×45°=90°.
故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=EDAE,S△ECD=EDCF.∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面积是.故答案选:D.【点睛】本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.6、B【解析】根据图表,可得抛物线y=a(x+1)2+2与x轴的交点坐标为(−3,0);将(−3,0)代入y=a(x+1)2+2,可得a(−3+1)2+2=0,解得a=−;所以抛物线的表达式为y=−(x+1)2+2;当y=0时,可得−(x+1)2+2=0,解得x1=1,x2=−3,所以该抛物线在y轴右侧部分与x轴交点的坐标是(1,0).故选B.7、B【分析】根据同底数幂乘法公式进行计算即可.【详解】.故选:B.【点睛】本题考查同底数幂乘法,熟记公式即可,属于基础题型.8、B【分析】根据二次函数的图象及性质与各项系数的关系,逐一判断即可.【详解】解:A.因为2>0,所以它的开口方向向上,故不选A;B.因为2>0,二次函数有最小值,当x=0时,y有最小值4,故选B;C.该二次函数的对称轴是y轴,故不选C;D.由二次函数的解析式可知:它的顶点坐标为(0,4),故不选D.故选:B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.9、D【解析】分析:根据必然事件指在一定条件下,一定发生的事件,可得答案.详解:A.
−a是非正数,是随机事件,故A错误;B.两个相似图形是位似图形是随机事件,故B错误;C.随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C错误;D.平移后的图形与原来对应线段相等是必然事件,故D正确;故选D.点睛:考查随机事件,解决本题的关键是正确理解随机事件,不可能事件,必然事件的概念.10、B【分析】根据锐角余弦函数值在0°到90°中,随角度的增大而减小进行对比即可;【详解】锐角余弦函数值随角度的增大而减小,∵cos30°=,cos45°=,∴若锐角的余弦值为,且则30°<α<45°;故选B.【点睛】本题主要考查了锐角三角函数的增减性,掌握锐角三角函数的增减性是解题的关键.11、D【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【详解】解:∵点、、在反比例函数的图象上,∴,,,又∵,∴.故选:D.【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.12、B【解析】解:A.根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;B.根据邻边相等的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形;C.根据一组邻角相等的平行四边形是矩形,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;D.根据对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形.故选B.二、填空题(每题4分,共24分)13、3π【详解】.故答案为:.14、【分析】设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】点P在圆外,则点到圆心的距离大于圆的半径,因而线段OP的长度的取值范围是OP>1.故答案为.【点睛】本题考查了对点与圆的位置关系的判断.熟记点与圆位置关系与数量关系的对应是解题关键,由位置关系可推得数量关系,同样由数量关系也可推得位置关系.15、【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:.故答案为:.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.16、,【解析】利用“十字相乘法”对等式的左边进行因式分解.【详解】由原方程,得,则或,解得,.故答案为:,.【点睛】本题考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).17、【分析】由题中所给条件证明△ADF△ACG,可求出的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案为.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.18、1.【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,∴a=2020,b=﹣2019,∴a+b=1.故答案为:1.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的符号是解题关键.三、解答题(共78分)19、(1)证明见解析;(2)1【分析】(1)根据等边三角形的性质可得∠OAC=30°,∠BCA=10°,根据平行线的性质得到∠EAC=10°,求出∠OAE=90°,可得AE是⊙O的切线;(2)先根据等边三角形性质得AB=AC,∠BAC=∠ABC=10°,由四点共圆得∠ADF=∠ABC=10°,得△ADF是等边三角形,然后证明△BAD≌△CAF,可得的长.【详解】证明:(1)连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=10°,∵AE∥BC,∴∠EAC=∠BCA=10°,∴∠OAE=∠OAC+∠EAC=30°+10°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=10°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=10°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=10°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF,∴BD=CF=1.【点睛】本题考查了三角形的外接圆,切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.20、6+【分析】如下图,过点C作CF⊥AB于点F,设AB长为x,则易得AF=x-4,在Rt△ACF中利用∠的正切函数可由AF把CF表达出来,在Rt△ABE中,利用∠的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关于x的方程,解方程求得x的值即可得到AB的长.【详解】解:如图,过点C作CF⊥AB,垂足为F,设AB=x,则AF=x-4,∵在Rt△ACF中,tan∠=,∴CF==BD,同理,Rt△ABE中,BE=,∵BD-BE=DE,∴-=3,解得x=6+.答:树高AB为(6+)米.【点睛】作出如图所示的辅助线,利用三角函数把CF和BE分别用含x的式子表达出来是解答本题的关键.21、(1)售价应定为每件40元;(2)每周获得的利润的取值范围是1250元2250元.【分析】(1)根据题意列出方程即可求解;(2)根据题意列出二次函数,根据求出W的取值.【详解】解:(1)根据题意得,解得,.∵让消费者得到最大的实惠,∴.答:售价应定为每件40元.(2).∵,∴当时,有最大值2250.当时,;当时,.∴每周获得的利润的取值范围是1250元2250元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出方程或二次函数进行求解.22、,2【分析】先根据分式混合运算的法则把原式进行化简,再选取使原式有意义的x的值代入进行计算即可.【详解】解:原式当时(、,其它的数都可以).【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【分析】(1)将代入二次函数解析式即可得点C的坐标;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出抛物线的解析式;(3)①设直线直线AC的解析式为,把A(3,0),C代入即可得直线AC的解析式;②存在点P,使得△PAD的面积等于△DAE的面积;设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,根据S△PAD=S△DAE时,即可得PD=DE,即可得出结论.【详解】解:(1)由y=ax2+bx+3,令∴点C的坐标为(0,3);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3得,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(3)①设直线直线AC的解析式为,把A(3,0),C代入得,解得,∴直线AC的解析式为;②存在点P,使得△PAD的面积等于△DAE的面积,理由如下:设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),∴PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,当S△PAD=S△DAE时,有,得PD=DE,∴﹣x2+3x=﹣x+3解得x1=1,x2=3(舍去),∴y=﹣x2+2x+3=﹣12+2+3=4,∴当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【点睛】本题考查了用待定系数法求解析式,二次函数的综合,掌握知识点是解题关键.24、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.【分析】将顶点(0,5)及点(﹣3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S=3和2.5代入抛物线解析式,即可求出点C将线段AB分成两段的长;(2)设AC=y,CB=x,可直接写出点C分AB所得两段AC与CB的函数解析式,并画出图象,证△OPM为等腰直角三角形,过点O作OH⊥PM于点H,则OH=PM=,分情况可讨论出AC与CB的函数图象(线段PM)与⊙O的位置关系;(3)设直角三角形的两直角边长分别为a,b,由勾股定理及完全平公式可以证明S是x的二次函数,并可写出x的取值范围及相应S的取值范围.【详解】解:∵抛物线y=ax2+bx+c的顶点(0,5),∴y=ax2+5,将点(﹣3,)代入,得=a×(﹣3)2+5,∴a=,∴抛物线的解析式为:y=;(2)∵S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上),在y=,当y=0时,x2=2,x2=﹣2,∴M(2,0),即当x=2时,S=0,∴d的值为2;∴弯折后A、B两点的距离x的取值范围是0<x<2;当S=3时,设AC=a,则BC=2﹣a,∴a(2﹣a)=3,整理,得a2﹣2a+6=0,∵△=b2﹣4ac=﹣4<0,∴方程无实数根;当S=2.5时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司股份合作协议书新
- 厂家电池采购合同
- 并购交易居间协议(与卖方财务顾问签)
- 保温材料公司劳务协议书
- 工地杂工承包合同范文
- 餐饮经营合作协议范文
- 工程学习心得体会
- 工程项目招标自查自纠报告
- 湖南省郴州市九校2023-2024学年高一下学期5月月考地理试题
- 4.1 陆地水体及其关系-河流的补给类型 中图版(2019)选择性必修1高二上学期
- 危重新生儿监护内容
- 《沐浴心育阳光 健康快乐成长》心理健康主题班会课件
- 五年级数学上册试题 -《统计表和条形统计图》习题2-苏教版(含答案)
- 空调、电视机供货安装及售后服务方案
- 公司办公设备调整台账
- 人行道铺装安全技术交底
- 辅导员科研专项基金项目管理办法(试行)
- GB∕T 31068-2014 普通高等学校安全技术防范系统要求
- 西方音乐史第二学期名词解释
- 第4课 夏商周的更替 复习课件(28张PPT)
- DB44∕T 1591-2015 小档口、小作坊、小娱乐场所消防安全整治技术要求
评论
0/150
提交评论