2022年广东省佛山市顺德区数学九上期末学业水平测试试题含解析_第1页
2022年广东省佛山市顺德区数学九上期末学业水平测试试题含解析_第2页
2022年广东省佛山市顺德区数学九上期末学业水平测试试题含解析_第3页
2022年广东省佛山市顺德区数学九上期末学业水平测试试题含解析_第4页
2022年广东省佛山市顺德区数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. B.C. D.2.二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足,图象与轴相交于两点,与轴相交于点.给出下列结论:①;②;③若,则;④.其中正确的个数是()A.1 B.2 C.3 D.43.如图,是等边三角形,且与轴重合,点是反比例函数的图象上的点,则的周长为()A. B. C. D.4.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①5.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.66.已知一元二次方程x2+kx﹣5=0有一个根为1,k的值为()A.﹣2 B.2 C.﹣4 D.47.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米 B.15米 C.25米 D.30米8.如图,抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①;②;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为A.1个 B.2个 C.3个 D.4个9.下列图形中不是位似图形的是A. B. C. D.10.若(、均不为0),则下列等式成立的是()A. B. C. D.11.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°12.2018年,临江市生产总值为1587.33亿元,请用科学记数法将1587.33亿表示为()A.1587.33×108 B.1.58733×1013C.1.58733×1011 D.1.58733×1012二、填空题(每题4分,共24分)13.观察下列各式:;;;则_______________________.14.当a=____时,关于x的方程式为一元二次方程15.在△ABC中,∠C=90°,BC=2,,则边AC的长是.16.已知关于x的一元二次方程(k-1)x2+x+k2-1=0有一个根为0,则k的值为________.17.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.18.如图,是以点为位似中心经过位似变换得到的,若,则的周长与的周长比是__________.三、解答题(共78分)19.(8分)已知为实数,关于的方程有两个实数根.(1)求实数的取值范围.(2)若,试求的值.20.(8分)在平面直角坐标系中,直线分别与,轴交于,两点,点在线段上,抛物线经过,两点,且与轴交于另一点.(1)求点的坐标(用只含,的代数式表示);(2)当时,若点,均在抛物线上,且,求实数的取值范围;(3)当时,函数有最小值,求的值.21.(8分)如图,的顶点坐标分别为,,.(1)画出关于点的中心对称图形;(2)画出绕原点逆时针旋转的,直接写出点的坐标为_________;(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为____________.(用含,的式子表示)22.(10分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC、DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想。(不需要证明)23.(10分)如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为.24.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶5次,成绩统计如下表:(1)甲、乙的平均成绩分别是多少?(2)甲、乙这5次比赛的成绩的方差分别是多少?(3)如果规定成绩较稳定者胜出,你认为谁应该胜出?说明你的理由;(4)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?25.(12分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.26.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.

参考答案一、选择题(每题4分,共48分)1、D【解析】第一个月是560,第二个月是560(1+x),第三月是560(1+x)2,所以第一季度总计560+560(1+x)+560(1+x)2=1850,选D.2、C【分析】根据对称轴的位置、开口方向、与y轴的交点可对①②④进行判断,根据,转化为代数,计算的值对③进行判断即可.【详解】解:①∵抛物线开口向下,∴,∵抛物线对称轴为直线,∴,∴∴,故①正确,②∵,,∴,又∵抛物线与y轴交于负半轴,∴,∴,故②错误,③∵点C(0,c),,点A在x轴正半轴,∴A,代入得:,化简得:,又∵,∴即,故③正确,④由②可得,当x=1时,,∴,即,故④正确,所以正确的是①③④,故答案为C.【点睛】本题考查了二次函数中a,b,c系数的关系,根据图象得出a,b,c的的关系是解题的关键.3、A【分析】设△OAB的边长为2a,根据等边三角形的性质,可得点B的坐标为(-a,a),代入反比例函数解析式可得出a的值,继而得出△OAB的周长.【详解】解:如图,设△OAB的边长为2a,过B点作BM⊥x轴于点M.

又∵△OAB是等边三角形,

∴OM=OA=a,BM=a,

∴点B的坐标为(-a,a),

∵点B是反比例函数y=−图象上的点,

∴-a•a=-8,

解得a=±2(负值舍去),

∴△OAB的周长为:3×2a=6a=12.

故选:A.【点睛】此题考查反比例函数图象上点的坐标特征,等边三角形的性质,设△OAB的边长为2a,用含a的代数式表示出点B的坐标是解题的关键.4、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.5、D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6、D【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于k的一次方程1﹣5+k=0,然后解一次方程即可.【详解】解:把x=1代入方程得1+k﹣5=0,解得k=1.故选:D.【点睛】本题考查一元二次方程的解.熟记一元二次方程解得定义是解决此题的关键.7、B【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.【详解】解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.【点睛】本题主要利用定理--在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.8、D【解析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.9、C【解析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.【详解】根据位似图形的概念,A、B、D三个图形中的两个图形都是位似图形;C中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选C.【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.10、D【分析】直接利用比例的性质分别判断得出答案.【详解】解:A、,则xy=21,故此选项错误;

B、,则xy=21,故此选项错误;

C、,则3y=7x,故此选项错误;

D、,则3x=7y,故此选项正确.

故选:D.【点睛】此题主要考查了比例的性质,正确将比例式变形是解题关键.11、C【解析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.12、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法将1587.33亿表示为1587.33×108=1.58733×1.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,为整数,表示时关键要正确确定的值以及的值.二、填空题(每题4分,共24分)13、【分析】由所给式子可知,()()=,根据此规律解答即可.【详解】由题意知()()=,∴.故答案为.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14、≠±1【分析】方程是一元二次方程的条件是二次项次数不等于0,据此即可求得a的范围.【详解】根据题意得:a1-4≠0,解得:a≠±1.故答案是:≠±1.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.15、.【详解】解:∵BC=2,∴AB==3∴AC=故答案为:.16、-1【解析】把x=0代入方程得k2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1,故答案为:-1.17、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.18、2:1【分析】根据位似三角形的性质,可得出两个三角形的周长比等于位似比等于边长比求解即可.【详解】解:由题意可得出,∵的周长与的周长比=故答案为:2:1.【点睛】本题考查的知识点是位似变化,根据题目找出两个图形的位似比是解此题的关键.三、解答题(共78分)19、(1).(2)-3.【分析】(1)把方程化为一般式,根据方程有两个实数根,可得,列出关于的不等式,解出的范围即可;(2)根据一元二次方程根与系数的关系,可得,,再将原等式变形为

,然后整体代入建立关于的方程,解出值并检验即可.【详解】(1)解:原方程即为.,∴.∴.∴;(2)解:由根系关系,得,∵,∴∴.即.解得,或∵∴.故答案为(1).(2)-3.【点睛】本题考查一元二次方程根的判别式及应用,一元二次方程的根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.20、(1);(2),;(3)或.【分析】(1)在一次函数中求点A,B的坐标,然后将点C,A坐标代入二次函数解析式,求得,令y=0,解方程求点D的坐标;(2)由C点坐标确定m的取值范围,结合抛物线的对称性,结合函数增减性分析n的取值范围;(3)利用顶点纵坐标公式求得函数最小值,然后分情况讨论:当点在点的右侧时或做测时,分别求解.【详解】解:(1)∵直线分别与,轴交于,两点,∴,.∵抛物线过点和点,∴.∴.令,得.解得,.∴.(2)∵点在线段上,∴.∵,∴,.∴抛物线的对称轴是直线.在抛物线上取点,使点与点关于直线对称.由得.∵点在抛物线上,且,∴由函数增减性,得,.(3)∵函数有最小值,∴.①当点在点的右侧时,得,解得.∴,解得,.②当点在点的左侧时,得,解得.∴.解得:,.综上所述,或.【点睛】本题考查二次函数的性质,属于综合性题目,掌握待定系数法解函数解析式,利用数形结合思想解题,注意分类讨论是本题的解题关键.21、(1)详见解析;(2)图详见解析,点的坐标为;(3)的坐标为.【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;

(2)利用网格特点和旋转的性质画出A2、B2、C2,从而得到C2点的坐标;

(3)利用(2)中对应点的坐标变换规律写出Q的坐标.【详解】解:(1)如图,为所作;(2)如图,为所作;点的坐标为(3)由(2)中的规律可知的坐标为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、(1)见解析;(2)DN-BM=MN【分析】(1)根据题意延长CB至E使得BE=DN,连接AE,利用全等三角形判定证明△ABE≌△AND和△EAM≌△NAM,等量代换即可求证BM+DN=MN;(2)由题意在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【详解】解:(1)证明:如图1,延长CB至E使得BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°=∠ABE,在△ADN和△ABE中∵AD=AB∠D=∠ABEDN=BE,△ABE≌△ADN(SAS),∴∠BAE=∠DAN,AE=AN,∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,∵∠MAN=45°,∴∠EAM=∠MAN,∵在△EAM和△NAM中AE=AN∠EAM=∠NAMAM=AM,∴△EAM≌△NAM,∴MN=ME,∵ME=BM+BE=BM+DN,∴BM+DN=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN-BM=MN.证明:如图2,在DN上截取DE=MB,连接AE,∵AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°-45°=45°=∠MAN,∵在△AMN和△AEN中,AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN-DE=EN,∴DN-BM=MN.【点睛】本题为四边形的综合题,考查知识点有正方形的性质、全等三角形的判定和性质、垂直平分线的判定和性质等,熟练利用全等三角形判定定理以及作辅助线技巧构造三角形全等是解题的关键.23、(1)见解析,(2)图见解析;(4,1)【解析】(1)让三角形的各顶点都绕点A顺时针旋转90°后得到对应点,顺次连接即可;(2)根据△ABC的各顶点关于原点的中心对称,得出A2、B2、C2的坐标,连接各点,即可得到结论.【详解】解:(1)所画图形如下所示,△A1B1C1即为所求;(2)所画图形如下所示,△AB2C2即为所求.点C2的坐标为(4,1),故答案为:(4,1).【点睛】本题主要考查了旋转变换图形的方法,图形的中心对称问题和平移的性质,考查了利用直角坐标系解决问题的能力,关于原点对称的两个点的横坐标和纵坐标都互为相反数.24、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论