2022年安庆九一六校九年级数学第一学期期末经典模拟试题含解析_第1页
2022年安庆九一六校九年级数学第一学期期末经典模拟试题含解析_第2页
2022年安庆九一六校九年级数学第一学期期末经典模拟试题含解析_第3页
2022年安庆九一六校九年级数学第一学期期末经典模拟试题含解析_第4页
2022年安庆九一六校九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知关于x的方程x2﹣3x+2k=0有两个不相等的实数根,则k的取值范围是()A.k> B.k< C.k<﹣ D.k<2.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.m C.m D.4m3.抛物线的对称轴为A. B. C. D.4.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.5.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度6.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B. C. D.7.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+28.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A. B. C. D.9.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.10.点到轴的距离是()A. B. C. D.二、填空题(每小题3分,共24分)11.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为_____步.12.若函数y=(k-2)是反比例函数,则k=______.13.方程的根是____.14.图形之间的变换关系包括平移、______、轴对称以及它们的组合变换.15.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.16.二次函数的图像经过原点,则a的值是______.17.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.18.半径为10cm的半圆围成一个圆锥,则这个圆锥的高是__cm.三、解答题(共66分)19.(10分)如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若⊙O的半径为6,∠BAC=60°,则DE=________.20.(6分)如图,抛物线与轴交于两点,与轴交于点,且.直线与抛物线交于两点,与轴交于点,点是抛物线的顶点,设直线上方的抛物线上的动点的横坐标为.(1)求该抛物线的解析式及顶点的坐标.(2)连接,直接写出线段与线段的数量关系和位置关系.(3)连接,当为何值时?(4)在直线上是否存在一点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.22.(8分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.23.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△ABC;(2)请画出△ABC关于原点对称的△ABC;(3)在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.24.(8分)如图,在平面直角坐标系中,抛物线的顶点为,且经过点与轴交于点,连接,,.(1)求抛物线对应的函数表达式;(2)点为该抛物线上点与点之间的一动点.①若,求点的坐标.②如图②,过点作轴的垂线,垂足为,连接并延长,交于点,连接延长交于点.试说明为定值.25.(10分)随着经济快速发展,环境问题越来越受到人们的关注.某校为了了解节能减排、垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:(1)本次调查的学生共有___________人,估计该校名学生中“不了解”的人数是__________人;(2)将条形统计图补充完整;(3)“非常了解”的人中有,两名男生,,两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到名男生的概率.26.(10分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用判别式的意义得到△=(﹣3)2﹣4•2k>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)2﹣4•2k>0,解得k<.故选:B.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.2、C【详解】如图,由题意得:AP=3,AB=6,∴在圆锥侧面展开图中故小猫经过的最短距离是故选C.3、B【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,

∴对称轴是直线x=0,即为y轴.

故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.4、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.5、D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.6、D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长圆柱体的高=故答案为:D.【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.7、D【解析】试题分析:一元二次方程的一般式为:a+bx+c=0(a、b、c为常数,且a≠0),根据定义可得:A选项中a有可能为0,B选项中含有分式,C选项中经过化简后不含二次项,D为一元二次方程.考点:一元二次方程的定义8、C【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为故选C9、C【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.点睛:相似三角形的判定:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两个三角形相似.三组边对应成比例,两个三角形相似.10、C【分析】根据点的坐标的性质即可得.【详解】由点的坐标的性质得,点P到x轴的距离为点P的纵坐标的绝对值则点到轴的距离是故选:C.【点睛】本题考查了点的坐标的性质,掌握理解点的坐标的性质是解题关键.二、填空题(每小题3分,共24分)11、1.【分析】设正方形城池的边长为步,根据比例性质求.【详解】解:设正方形城池的边长为步,即正方形城池的边长为1步.故答案为1.【点睛】本题考查了相似三角形的应用:构建三角形相似,利用相似比计算对应的线段长.12、-1【解析】根据反比例函数的定义列出方程,解出k的值即可.【详解】解:若函数y=(k-1)是反比例函数,则解得k=﹣1,故答案为﹣1.13、,【分析】把方程变形为,把方程左边因式分解得,则有y=0或y-5=0,然后解一元一次方程即可.【详解】解:,∴,∴y=0或y-5=0,∴.故答案为:.【点睛】此题考查了解一元二次方程-因式分解法,其步骤为:移项,化积,转化和求解这几个步骤.14、旋转【分析】图形变换的形式包括平移、旋转和轴对称.【详解】图形变换的形式,分别为平移、旋转和轴对称故答案为:旋转.【点睛】本题考查了图形变换的几种形式,分别为平移、旋转和轴对称,以及他们的组合变换.15、1【分析】由正方形的性质得出△ABD是等腰直角三角形,由EF∥BD,得出△AEF是等腰直角三角形,由折叠的性质得△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,则GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),由四边形BEFD与△AHG的周长差为5-2列出方程解得x=4,即可得出结果.【详解】∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∵EF∥BD,∴△AEF是等腰直角三角形,由折叠的性质得:△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,∴GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),∵四边形BEFD与△AHG的周长差为5-2,∴x+(x-1)+2-[2(x-2)+(x-2)]=5-2,解得:x=4,∴正方形ABCD的周长为:4×4=1,故答案为:1.【点睛】本题考查了折叠的性质、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握折叠与正方形的性质以及等腰直角三角形的性质是解题的关键.16、1【分析】根据题意将(0,0)代入二次函数,即可得出a的值.【详解】解:∵二次函数的图象经过原点,∴=0,∴a=±1,∵a+1≠0,∴a≠-1,∴a的值为1.故答案为:1.【点睛】本题考查二次函数图象上点的特征,图象过原点,可得出x=0,y=0,从而分析求值.17、1【分析】连接OC,根据反比例函数的几何意义,求出△BCO面积即可解决问题.【详解】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=1,故答案为:1.【点睛】本题考查反比例函数、切线的性质等知识,解题的关键是理解S△BCO=,属于中考常考题型.18、【分析】由半圆的半径可得出圆锥的母线及底面半径的长度,利用勾股定理即可求出圆锥的高.【详解】设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为5.【点睛】本题考查了圆锥的计算,利用勾股定理求出圆锥的高是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3).【分析】(1)连接AD,由直径所对的圆周角度数及中点可证AD是BC的垂直平分线,根据线段垂直平分线的性质可得结论;(2)连接OD,由中位线的性质可得OD∥AC,由平行的性质与切线的判定可证;(3)易知是等边三角形,由等边三角形的性质可得CB长及度数,利用直角三角形30度角的性质及勾股定理可得结果.【详解】(1)连接AD.∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,AD是BC的垂直平分线∴AB=AC.(2)连接OD.∵DE⊥AC,∴∠CED=90°.∵O为AB中点,D为BC中点,∴OD∥AC.∴∠ODE=∠CED=90°.∴DE是⊙O的切线.(3)由(1)得是等边三角形在中,根据勾股定理得【点睛】本题考查了圆与三角形的综合,涉及的知识点主要有圆的切线的判定、圆周角定理的推论、垂直平分线的性质、等边三角形与直角三角形的性质,灵活的将图形与已知条件相结合是解题的关键.20、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)【分析】(1)直线y=x+1与抛物线交于A点,可得点A和点E坐标,则点B、C的坐标分别为:(3,0)、(0,3),即可求解;(2)CQ==AE,直线AQ和AE的倾斜角均为45°,即可求解;(3)根据题意将△APD的面积和△DAB的面积表示出来,令其相等,即可解出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【详解】解:(1)直线与抛物线交于点,则点、点.∵,∴点的坐标为,故抛物线的表达式为,将点的坐标代入,得,解得,故抛物线的表达式为,函数的对称轴为,故点的坐标为.(2)CQ=AE,且CQ∥AE,理由是:,,∴CQ=AE,直线CQ表达式中的k==1,与直线AE表达式中k相等,故AE∥CQ,

故线段CQ与线段AE的数量关系和位置关系是平行且相等;(3)联立直线与抛物线的表达式,并解得或2.故点.如图1,过点作轴的平行线,交于点,设点,则点.解得或1.(4)存在,理由:设点,点,,而点,①当时,如图2,过点作轴的平行线,分别交过点、点与轴的平行线于点、,,,,,,在△PGQ和△HMP中,,,,,即:,,解得m=2或n=3,当n=3时,解得:或2(舍去),故点P;②当时,如图3,,则点、关于抛物线对称轴对称,即垂直于抛物线的对称轴,而对称轴与轴垂直,故轴,则,可得:△MQP和△NQH都是等腰直角三角形,MQ=MP,∵MQ=1-m,MP=4-n,∴n=3+m,代入,解得:或1(舍去),故点P;③当时,如图4所示,点在下方,与题意不符,故舍去.如图5,P在y轴右侧,同理可得△PHK≌△HQJ,可得QJ=HK,∵QJ=t-1,HK=t+1-n,∴t-1=t+1-n,∴n=2,∴,解得:m=(舍去)或,∴点P(,2)综上,点的坐标为:或(,2)【点睛】本题考查的是二次函数综合运用,难度较大,涉及到一次函数、三角形全等、图形的面积计算等,要注意分类求解,避免遗漏.21、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.22、(1)证明见解析;(2)【分析】(1)根据三角形内角和证明即可证明三角形相似,(2)根据相似三角形对应边成比例即可解题.【详解】(1)证明:,(2)由得:【点睛】本题考查了相似三角形的判定和性质,中等难度,熟悉证明三角形相似的方法是解题关键.23、(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【分析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用24、(1);(2)①点的坐标为,;②,是定值.【分析】(1)设函数为,把代入即可求解;(2)①先求出直线AB解析式,求出C’点,得到,再求出,设点,过作轴的平行线交于点,得到,根据三角形面积公式得,解出x即可求解;②过作轴的垂线,垂足为点,设,表示出,故,根据,得,故,即,得到.再过作的垂线,垂足为点,根据相似三角形的性质得到,可得的值即为定值.【详解】(1)解:设,把点代入,得,解得,∴该抛物线对应的函数表达式为.(2)①设直线的函数表达式为,把,代入,得,解得.∴直线的函数表达式为.设直线与轴交于点,则点,∴.,.设点,过作轴的平行线交于点,则,∴,,,所以点的坐标为,.②过作轴的垂线,垂足为点,设,则,,由,得,,即,故.过作的垂线,垂足为点,由,得,,即,故.所以,是定值.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,相似三角形的判定与性质.25、(1)50,600;(2)见解析;(3)见解析,【分析】(1)用“非常了解”的人数除以其对应百分比可得总人数,用1减去其他所占的百分比可得“不了解”的学生所占百分比,用2000乘以“不了解”的学生所占百分比即可得“不了解”的学生人数;(2)先求出“不了解”的人数,再补充条形统计图即可;(3)根据题意画出表格,可得一共12种抽取情况,恰好抽到2名男生的情况有2种,再利用概率公式计算即可.【详解】解:(1)本次调查的学生总人数为人;“不了解”的学生所占百分比为,估计该校名学生中“不了解”的人数约有(人)(2)30%×50=15(人)如下图(3)列表如下,由表可知共有种可能的结果,恰好抽到名男生的结果有个,(恰好抽到名男生)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及树状图和表格求远概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.26、(1)75°;(2)证明见解析;(3)或或.【分析】(1)根据三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论