河北省滦南县2025届九年级数学第一学期期末考试模拟试题含解析_第1页
河北省滦南县2025届九年级数学第一学期期末考试模拟试题含解析_第2页
河北省滦南县2025届九年级数学第一学期期末考试模拟试题含解析_第3页
河北省滦南县2025届九年级数学第一学期期末考试模拟试题含解析_第4页
河北省滦南县2025届九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省滦南县2025届九年级数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列运算正确的是()A.=﹣2 B.(2)2=6 C. D.2.如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为().A. B. C. D.3.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°4.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是()A.①④ B.①② C.②③④ D.②③5.如图所示的几何体的主视图为()A. B. C. D.6.已知点C为线段AB延长线上的一点,以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为()A.点B在⊙A上 B.点B在⊙A外 C.点B在⊙A内 D.不能确定7.下列说法中错误的是()A.篮球队员在罚球线上投篮一次,未投中是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上D.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近8.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.59.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃10.函数与函数在同一坐标系中的大致图象是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=_____.12.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三角形面积等于9,则这条抛物线解析式的顶点式是______.13.若为一元二次方程的一个根,则__________.14.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.15.如图所示,小明在探究活动“测旗杆高度”中,发现旗杆的影子恰好落在地面和教室的墙壁上,测得,,而且此时测得高的杆的影子长,则旗杆的高度约为__________.16.某校七年级共名学生参加数学测试,随机抽取名学生的成绩进行统计,其中名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有______人.17.如图,一下水管横截面为圆形,直径为,下雨前水面宽为,一场大雨过后,水面上升了,则水面宽为__________.18.在平面直角坐标系中,点与点关于原点对称,则__________.三、解答题(共66分)19.(10分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).20.(6分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)21.(6分)如图,在正方形网格上有以及一条线段.请你以为一条边.以正方形网格的格点为顶点画一个,使得与相似,并求出这两个三角形的相似比.22.(8分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?23.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.24.(8分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;线段OD的长为.②求∠BDC的度数;(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.25.(10分)已知二次函数图象的顶点在原点,对称轴为轴.直线的图象与二次函数的图象交于点和点(点在点的左侧)(1)求的值及直线解析式;(2)若过点的直线平行于直线且直线与二次函数图象只有一个交点,求交点的坐标.26.(10分)二次函数y=x2+6x﹣3配方后为y=(x+3)2+_____.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.【详解】A:=2,故本选项错误;B:(2)2=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确,故选D.【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.2、C【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC∥x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.【详解】∵Rt△OAB的顶点A(−2,4)在抛物线上,∴4=4a,解得a=1,∴抛物线为,∵点A(−2,4),∴B(−2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入,得,解得∴P故答案为:.【点睛】考查二次函数图象上点的坐标特征,坐标与图形变化-旋转,掌握旋转的性质是解题的关键.3、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.4、D【分析】根据函数的图象中的信息判断即可.【详解】①由图象知小球在空中达到的最大高度是;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:,把代入得,解得,∴函数解析式为,把代入解析式得,,解得:或,∴小球的高度时,或,故④错误;故选D.【点睛】本题考查了二次函数的应用,解此题的关键是正确的理解题意5、B【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.6、C【分析】根据题意确定AC>AB,从而确定点与圆的位置关系即可.【详解】解:∵点C为线段AB延长线上的一点,∴AC>AB,∴以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为点B在⊙A内,故选:C.【点睛】本题考查的知识点是点与圆的位置关系,根据题意确定出AC>AB是解此题的关键.7、C【分析】根据随机事件的定义可判断A项,根据中心对称图形和必然事件的定义可判断B项,根据概率的定义可判断C项,根据频率与概率的关系可判断D项,进而可得答案.【详解】解:A、篮球队员在罚球线上投篮一次,未投中是随机事件,故本选项说法正确,不符合题意;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,故本选项说法正确,不符合题意;C、“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上,故本选项说法错误,符合题意;D、“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近,故本选项说法正确,不符合题意;故选:C.【点睛】本题考查了随机事件、必然事件、中心对称图形以及频率与概率的关系等知识,熟练掌握上述知识是解题的关键.8、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.9、C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:==0.5,故本选项错误;C、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本选项正确;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.10、B【分析】根据函数与函数分别确定图象即可得出答案.【详解】∵,-2<0,∴图象经过二、四象限,∵函数中系数小于0,∴图象在一、三象限.故选:B.【点睛】此题主要考查了从图象上把握有用的条件,准确确定图象位置,正确记忆一次函数与反比例函数的区别是解决问题的关键.二、填空题(每小题3分,共24分)11、3【分析】利用60°余弦值可求得OB的长,作AD⊥OB于点D,利用60°的正弦值可求得AD长,利用60°余弦值可求得BD长,OB-BD即为点A的横坐标,那么k等于点A的横纵坐标的积.【详解】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴BD=AB×sin60°=,AD=AB×cos60°=1,∴OD=OA﹣AD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.【点睛】本题考查了解直角三角形,反比例函数图像上点的坐标特征,解决本题的关键是利用相应的特殊的三角函数值得到点B的坐标;反比例函数的比例系数等于在它上面的点的横纵坐标的积.12、,【分析】根据对称轴是直线x=2,与x轴的两个交点距离为6,可求出与x轴的两个交点的坐标为(-1,0),(5,0);再根据顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±1,然后利用顶点式求得抛物线的解析式即可.【详解】解:∵对称轴是直线x=2,与x轴的两个交点距离为6,∴抛物线与x轴的两个交点的坐标为(-1,0),(5,0),设顶点坐标为(2,y),∵顶点与x轴的交点围成的三角形面积等于9,∴,∴y=1或y=-1,∴顶点坐标为(2,1)或(2,-1),设函数解析式为y=a(x-2)2+1或y=a(x-2)2-1;把点(5,0)代入y=a(x-2)2+1得a=-;把点(5,0)代入y=a(x-2)2-1得a=;∴满足上述全部条件的一条抛物线的解析式为y=-(x-2)2+1或y=(x-2)2-1.故答案为:,.【点睛】此题考查了二次函数的图像与性质,待定系数法求函数解析式.解题的关键是理解题意,采用待定系数法求解析式,若给了顶点,注意采用顶点式简单.13、-2【分析】把x=1代入已知方程可得关于m的方程,解方程即可求得答案.【详解】解:∵为一元二次方程的一个根,∴,解得:m=-2.故答案为:-2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.14、1【分析】作DE⊥AB于E,如图,利用勾股定理计算出BC=5,再根据角平分线的性质得DC=DE,然后利用面积法得到×5,从而可求出DE.【详解】作DE⊥AB于E,如图,

在Rt△ABC中,BC==5,

∵AD是三角形的角平分线,

∴DC=DE,

∵S△ACD+S△ABD=S△ABC,

∴×5,

∴DE=1,

即点D到直线AB的距离等于1.

故答案为1.【点睛】此题考查角平分线的性质,解题关键在于掌握角的平分线上的点到角的两边的距离相等.15、1【分析】作BE⊥AC于E,可得矩形CDBE,利用同一时刻物高与影长的比一定得到AE的长度,加上CE的长度即为旗杆的高度【详解】解:作BE⊥AC于E,∵BD⊥CD于D,AC⊥CD于C,∴四边形CDBE为矩形,∴BE=CD=1m,CE=BD=2m,∵同一时刻物高与影长所组成的三角形相似,∴,即,解得AE=2(m),∴AC=AE+EC=2+2=1(m).故答案为:1.【点睛】本题考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.16、152.【解析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数.【详解】随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,∴样本优秀率为:20÷50=40%,又∵某校七年级共380名学生参加数学测试,∴该校七年级学生在这次数学测试中达到优秀的人数为:380×40%=152人.故答案为:152.【点睛】本题考查了用样本估计总体,解题的关键是求样本的优秀率.17、1【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【详解】解:如图:作OE⊥AB于E,交CD于F,连接OA,OC∵AB=60cm,OE⊥AB,且直径为100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案为:1.【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.18、1【分析】根据在平面直角坐标系中的点关于原点对称的点的坐标为,进而求解.【详解】∵点与点关于原点对称,∴,故答案为:1.【点睛】本题考查平面直角坐标系中关于原点对称点的特征,即两个点关于原点对称时,它们的坐标符号相反.三、解答题(共66分)19、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,∴,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.20、30米【解析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.【详解】由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴,∴米,答:山高AD为30米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21、图见解析,与的相似比是.【分析】可先选定BC与DE为对应边,对应边之比为1:2,据此来选定点F的位置,相似比亦可得.【详解】解:如图,与相似.理由如下:由勾股定理可求得,,BC=2,;,DE=4,,∴,∴∽,相似比是.【点睛】此题主要考查了相似三角形的判定与性质,利用网格得出三角形各边长度是解题关键.22、(1)x;(2)y=﹣4x2+800x;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【分析】(1)根据“每1吨化工原料可以加工成化工产品0.8吨”,即可求出;(2)根据总利润=总售价-总成本即可求出y关于x的函数关系式;(3)先求出y=38400元时,x的值,然后根据二次函数图象的开口方向和增减性即可求出x的取值范围.【详解】(1)x÷0.8=x吨,故答案为:x;故答案为:x;(2)根据题意得,y=x[1600﹣4(x﹣50)]﹣x•800=﹣4x2+800x,则y关于x的函数关系式为:y=﹣4x2+800x;(3)当y=38400时,﹣4x2+800x=38400,x2﹣200x+9600=0,(x﹣120)(x﹣80)=0,x=120或80,∵﹣4<0,∴当y≥38400时,80≤x≤120,∴100≤x≤150,∴如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【点睛】此题考查的是二次函数的应用,掌握实际问题中的等量关系和二次函数的增减性是解决此题的关键.23、(1)75°(2)见解析【解析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.24、(1)①,4;②;(2),证明见解析.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;②由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD=OB,然后根据勾股定理的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论