浙江省平阳县2025届九上数学期末学业水平测试模拟试题含解析_第1页
浙江省平阳县2025届九上数学期末学业水平测试模拟试题含解析_第2页
浙江省平阳县2025届九上数学期末学业水平测试模拟试题含解析_第3页
浙江省平阳县2025届九上数学期末学业水平测试模拟试题含解析_第4页
浙江省平阳县2025届九上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省平阳县2025届九上数学期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20° B.30° C.45° D.60°2.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>33.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.4.矩形不具备的性质是()A.是轴对称图形 B.是中心对称图形 C.对角线相等 D.对角线互相垂直5.连接对角线相等的任意四边形各边中点得到的新四边形的形状是()A.正方形 B.菱形 C.矩形 D.平行四边形6.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面.则这个圆锥的底面圆的半径为()A. B.1 C. D.27.如图,在中,,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似图形,使得的边长是的边长的2倍.设点的坐标是,则点的坐标是()A. B. C. D.8.已知正比例函数y=kx的图象经过第二、四象限,则一次函数y=kx﹣k的图象可能是图中的()A. B.C. D.9.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.10.如图,已知与位似,位似中心为点且的面积与面积之比为,则的值为()A. B.C. D.11.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示()A. B. C. D.12.已知与各边相切于点,,则的半径()A. B. C. D.二、填空题(每题4分,共24分)13.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.14.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)15.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点D与点B重合,折痕为EF,则ΔABE的面积为________cm216.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,ρ=________.17.二次函数解析式为,当x>1时,y随x增大而增大,求m的取值范围__________18.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.(1)求直线AC解析式;(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.20.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.21.(8分)用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?22.(10分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.23.(10分)已知关于的方程,其中是常数.请用配方法解这个一元二次方程.24.(10分)国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.(1)今年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?25.(12分)如图,已知是的直径,弦于点,是的外角的平分线.求证:是的切线.26.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.(1)求证:PD∥CB;(2)若AB=26,EB=8,求CD的长度.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.2、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.3、D【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4、D【分析】依据矩形的性质进行判断即可.【详解】解:矩形不具备的性质是对角线互相垂直,故选:D.【点睛】本题考查了矩形的性质,熟练掌握性质是解题的关键5、B【分析】先根据三角形的中位线定理和平行四边形的判定定理证得此四边形为平行四边形,再判断一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.【详解】如图所示,连接AC、BD,

∵E、F、G、H分别为各边的中点,

∴HG、EF分别为△ACD与△ABC的中位线,

∴HG∥AC∥EF,,

∴四边形EFGH是平行四边形;同理可得,,∵AC=BD,

∴EH=GH,

∴四边形EFGH是菱形;

故选:B.【点睛】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合思想解答.6、A【分析】根据扇形的弧长公式求出弧长,根据圆锥的底面周长等于它的侧面展开图的弧长求出半径.【详解】解:设圆锥底面的半径为r,

扇形的弧长为:,∵圆锥的底面周长等于它的侧面展开图的弧长,

∴根据题意得2πr=,解得:r=,故选A.【点睛】本题考查了圆锥的计算,掌握弧长公式、周长公式和圆锥与扇形的对应关系是解题的关键.7、A【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据相似三角形的性质求出CE,B′E的长,得到点B′的坐标.【详解】作BD⊥x轴于D,B′E⊥x轴于E,∵点的坐标是,点的坐标是,∴CD=2,BD=,由题意得:C∽△,相似比为1:2,∴,∴CE=4,B′E=1,∴点B′的坐标为(3,-1),故选:A.【点睛】本题考查了位似变换、坐标与图形性质,熟练掌握位似变换的性质是解答的关键.8、A【分析】根据正比例函数y=kx的图象经过第二、四象限可判断出k的符号,进而可得出结论.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:A.【点睛】本题考查的是一次函数的图象与系数的关系,先根据题意判断出k的符号是解答此题的关键.9、D【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【详解】如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是,故选:D.【点睛】考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。10、A【分析】根据位似图形的性质得到AC:DF=3:1,AC∥DF,再证明∽,根据相似的性质进而得出答案.【详解】∵与位似,且的面积与面积之比为9:4,∴AC:DF=3:1,AC∥DF,∴∠ACO=∠DFO,∠CAO=∠FDO,∴∽,∴AO:OD=AC:DF=3:1.故选:A.【点睛】本题考查位似图形的性质,及相似三角形的判定与性质,注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.11、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将4400000000用科学记数法表示为4.4×109.

故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、C【分析】根据内切圆的性质,得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于点G,然后求出BG的长度,利用面积相等即可求出内切圆的半径.【详解】解:如图,连接OA、OB、OC、OD、OE、OF,作BG⊥AC于点G,∵是的内切圆,∴,AE=AD=5,BD=BF=2,CE=CF=3,∴AC=8,AB=7,BC=5,在Rt△BCG和Rt△ABG中,设CG=x,则AG=,由勾股定理,得:,∴,解得:,∴,∴,∵,∴;故选:C.【点睛】本题考查了三角形内切圆的性质,利用勾股定理解直角三角形,以及利用面积法求线段的长度,解题的关键是掌握三角形内切圆的性质,熟练运用三角形面积相等进行解题.二、填空题(每题4分,共24分)13、2【解析】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3-1=2.14、【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.1,故答案为:0.1.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.15、6【解析】由折叠的性质可知AE与BE间的关系,根据勾股定理求出AE长可得面积.【详解】解:由题意可知BE=ED.因为AD=AE+DE=AE+BE=9cm,所以BE=9-AEcm.在RtΔABE中,根据勾股定理可知,AB2+AE2=BE2,所以32+A故答案为:6【点睛】本题考查了勾股定理,由折叠性质得出直角边与斜边的关系是解题的关键.16、【解析】由图象可得k=9.5,进而得出V=1.9m1时,ρ的值.【详解】解:设函数关系式为:V=,由图象可得:V=5,ρ=1.9,代入得:k=5×1.9=9.5,故V=,当V=1.9时,ρ=5kg/m1.故答案为5kg/m1.【点睛】本题考查的是反比例函数的应用,正确得出k的值是解题关键.17、m≤1【分析】先确定图像的对称轴x=,当x>1时,y随x增大而增大,则≤1,然后列不等式并解答即可.【详解】解:∵∴对称轴为x=∵当x>1时,y随x增大而增大∴≤1即m≤1故答案为m≤1.【点睛】本题考查二次函数的增减性,正确掌握二次函数得性质和解一元一次不等式方程是解答本题的关键.18、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.三、解答题(共78分)19、(1)y=﹣x+5;(2)点F(,);四边形AFDE的面积的最大值为;(3)点N(0,),点P的运动路径最短距离=2+.【分析】(1)先求出点A,点C坐标,用待定系数法可求解析式;(2)先求出点D坐标,设点F(x,﹣x2+4x+5),则点E坐标为(x,﹣x+5),即可求EF=﹣x2+5x,可求四边形AFDE的面积,由二次函数的性质可求解;(3)由动点P的运动路径=FM+MN+NC=GM+2+MH,则当点G,点M,点H三点共线时,动点P的运动路径最小,由两点距离公式可求解.【详解】解:(1)∵抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.∴当x=0时,y=5,则点A(0,5)当y=0时,0=﹣x2+4x+5,∴x1=5,x2=﹣1,∴点B(﹣1,0),点C(5,0)设直线AC解析式为:y=kx+b,∴解得:∴直线AC解析式为:y=﹣x+5,(2)∵过点A作AD平行于x轴,∴点D纵坐标为5,∴5=﹣x2+4x+5,∴x1=0,x2=4,∴点D(4,5),∴AD=4设点F(x,﹣x2+4x+5),则点E坐标为(x,﹣x+5)∴EF=﹣x2+4x+5﹣(﹣x+5)=﹣x2+5x,∵四边形AFDE的面积=AD×EF=2EF=﹣2x2+10x=﹣2(x﹣)2+∴当x=时,四边形AFDE的面积的最大值为,∴点F(,);(3)∵抛物线y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,∴MN=2,如图,将点C向右平移2个单位到点H(7,0),过点F作对称轴x=2的对称点G(,),连接GH,交直线x=2于点M,∵MN∥CH,MN=CH=2,∴四边形MNCH是平行四边形,∴NC=MH,∵动点P的运动路径=FM+MN+NC=GM+2+MH,∴当点G,点M,点H三点共线时,动点P的运动路径最小,∴动点P的运动路径最短距离=2+=2+,设直线GH解析式为:y=mx+n,∴,解得,∴直线GH解析式为:y=﹣x+,当x=2时,y=,∴点N(0,).【点睛】此题是二次函数综合题,主要考查了待定系数法求解析式,函数极值的确定方法,两点距离公式等知识,解题的关键是学会利用对称解决最短问题.20、(1)0.3,45;(2)108°;(3).【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、美国第一夫人比法国第一夫人小16岁.【分析】将法国新总统设为x岁,然后用含x的代数式分别表示出法国第一夫人,美国新总统,美国第一夫人,然后用法国第一夫人减去美国第一夫人的年龄即可得出答案.【详解】设法国新总统x岁,则法国第一夫人:(x+24)岁,美国新总统:(x+32)岁,美国第一夫人:(x+32﹣24)=(x+8)岁,故美国第一夫人比法国第一夫人小:(x+24)﹣(x+8)=16(岁).故美国第一夫人比法国第一夫人小16岁.【点睛】本题主要考查代数式的应用,掌握列代数式的方法是解题的关键.22、(1)详见解析;(2)1.【分析】(1)连接OC,根据切线的性质得到∠OCM=90°,得到OC∥AD,根据平行线的性质、等腰三角形的性质证明结论;(2)连接BC,连接BE交OC于点F,根据勾股定理求出BC,证明△CFB∽△BCA,根据相似三角形的性质求出CF,得到OF的长,根据三角形中位线定理解答即可.【详解】(1)证明:连接,如图:∵直线与相切于点∴∵∴∴∴∴∵∴∴∴是的平分线.(2)解:连接,连接交于点,如图:∵AB是的直径∴∵,∴∵∴∴,为线段中点∵,∴∴,即∴∴∵为直径中点,为线段中点∴.故答案是:(1)详见解析;(2)1【点睛】本题考查了切线的性质、平行线的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质以及三角形中位线的性质,适当的添加辅助线是解题的关键.23、详见解析.【分析】根据配方法可得,,再将p分为三种情况即可求出答案.【详解】,.当时,方程有两个不相等的实数根,;当时,方程有两个相等的实数根;当时,方程无实数根.【点睛】本题考查了解一元二次方程—配方法,熟练掌握这种方法是本题解题的关键.24、(1)每千克40元(2)猪肉的售价应该下降5元【分析】(1)设今年年初猪肉的价格为每千

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论