2025届陕西省咸阳市数学九上期末教学质量检测模拟试题含解析_第1页
2025届陕西省咸阳市数学九上期末教学质量检测模拟试题含解析_第2页
2025届陕西省咸阳市数学九上期末教学质量检测模拟试题含解析_第3页
2025届陕西省咸阳市数学九上期末教学质量检测模拟试题含解析_第4页
2025届陕西省咸阳市数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省咸阳市数学九上期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则的值为()A. B. C. D.2.已知x2+y=3,当1≤x≤2时,y的最小值是()A.-1 B.2 C.2.75 D.33.用配方法解方程时,原方程可变形为()A. B. C. D.4.等腰三角形底边长为10,周长为36,则底角的余弦值等于()A. B. C. D.5.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若,,以顶点为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A. B. C. D.6.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30° B.40° C.45° D.50°7.边长为2的正六边形的面积为()A.6 B.6 C.6 D.8.如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35° B.55° C.145° D.70°9.如图,点,,,,都在上,且的度数为,则等于()A. B. C. D.10.在一个有10万人的小镇,随机调查了1000人,其中有120人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A. B. C. D.11.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2019的值为()A.0 B.﹣1 C.1 D.(3)201912.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于(

)A. B. C. D.二、填空题(每题4分,共24分)13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为_____.14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.16.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是.17.已知直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,过点D(0,-1)的直线分别交、于点E、F,若△BDE与△BDF的面积相等,则k=____.18.已知∽,若周长比为4:9,则_____________.三、解答题(共78分)19.(8分)已知直线与是的直径,于点.(1)如图①,当直线与相切于点时,若,求的大小;(2)如图②,当直线与相交于点时,若,求的大小.20.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.21.(8分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=1.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线=.22.(10分)如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.(1)求抛物线的解析式.(2)点是轴正半轴上的一个动点,过点作轴,交直线于点,交抛物线于点.①若点在线段上(不与点,重合),连接,求面积的最大值.②设的长为,是否存在,使以点,,,为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.23.(10分)如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.24.(10分)如图,在平面直角坐标系中,点为坐标原点,每个小方格的边长为个单位长度,在第二象限内有横、纵坐标均为整数的两点,点,点的横坐标为,且.在平面直角坐标系中标出点,写出点的坐标并连接;画出关于点成中心对称的图形.25.(12分)如图,在中,直径垂直于弦,垂足为,连结,将沿翻转得到,直线与直线相交于点.(1)求证:是的切线;(2)若为的中点,,求的半径长;(3)①求证:;②若的面积为,,求的长.26.如图,在中,,于点,于点.(1)求证:;(2)若,求四边形的面积.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵DE∥BC,∴,∵,∴.故选B.考点:平行线分线段成比例.2、A【分析】移项后变成求二次函数y=-x2+2的最小值,再根据二次函数的图像性质进行答题.【详解】解:∵x2+y=2,∴y=-x2+2.∴该抛物线的开口方向向下,且其顶点坐标是(0,2).∵2≤x≤2,∴离对称轴越远的点所对应的函数值越小,∴当x=2时,y有最小值为-4+2=-2.故选:A.【点睛】本题考查了二次函数的最值.求二次函数的最值有常见的两种方法,第一种是配方法,第二种是直接套用顶点的纵坐标求,熟练掌握二次函数的图像及性质是解决本题的关键.3、B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】故选:B.【点睛】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.4、A【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案.【详解】解:如图,BC=10cm,AB=AC,可得AC=(36-10)÷2=26÷2=13(cm).又AD是底边BC上的高,∴CD=BD=5cm,

∴cosC=,即底角的余弦值为,故选:A.【点睛】本题主要考查等腰三角形的性质和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键.5、A【分析】由题意可知C(0,0),且过点(2,3),设该抛物线的解析式为y=ax2,将两点代入即可得出a的值,进一步得出解析式.【详解】根据题意,得该抛物线的顶点坐标为C(0,0),经过点(2,3).设该抛物线的解析式为y=ax2.3=a22.a=.该抛物线的解析式为y=x2.故选A.【点睛】本题考查了二次函数的应用,根据题意得出两个坐标是解题的关键.6、B【解析】试题解析:在中,故选B.7、A【解析】首先根据题意作出图形,然后可得△OBC是等边三角形,然后由三角函数的性质,求得OH的长,继而求得正六边形的面积.【详解】解:如图,连接OB,OC,过点O作OH⊥BC于H,∵六边形ABCDEF是正六边形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等边三角形,∴BC=OB=OC=2,∴它的半径为2,边长为2;∵在Rt△OBH中,OH=OB•sin60°=2×,∴边心距是:;∴S正六边形ABCDEF=6S△OBC=6××2×=6.故选:A.【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.8、D【解析】∵∠C=35°,∴∠AOB=2∠C=70°.故选D.9、D【分析】连接AB、DE,先求得∠ABE=∠ADE=25°,根据圆内接四边形的性质得出∠ABE+∠EBC+∠ADC=180°,即可求得∠CBE+∠ADC=155°.【详解】解:如图所示连接AB、DE,则∠ABE=∠ADE∵=50°∴∠ABE=∠ADE=25°∵点,,,都在上∴∠ADC+∠ABC=180°∴∠ABE+∠EBC+∠ADC=180°∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°故选:D.【点睛】本题主要考查的是圆周角定理和圆内接四边形的性质,作出辅助线构建内接四边形是解题的关键.10、C【解析】试题解析:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是.故选C.【点睛】本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11、B【分析】根据关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念,求出P1P2的坐标,得出a,b的值代入(a+b)2019求值即可.【详解】因为关于x轴对称横坐标不变,所以,a-1=2,得出a=3,又因为关于x轴对称纵坐标互为相反数,所以b-1=-5,得出b=-4(a+b)2019=(3-4)2019即.故答案为:B【点睛】本题考查关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念和有理数的幂运算原理,利用-1的偶次幂为1,奇次幂为它本身的原理即可快速得出答案为-1.12、C【解析】试题解析:设正方形网格每个小正方形边长为1,则BC边上的高为2,则,.故本题应选C.二、填空题(每题4分,共24分)13、4【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【详解】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,则S△AEC=EC•AD=4.故答案为4.【点睛】本题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解答本题的关键.14、6.【解析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.15、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.16、【详解】解:这个正十二面体,12个面上分别写有1~12这12个整数,其中是3的倍数或4的倍数的3,6,9,12,4,8,共6种情况,故向上一面的数字是3的倍数或4的倍数的概率是6/12=故答案为:.17、【分析】先利用一次函数图像相关求出A、B、C的坐标,再根据△BDE与△BDF的面积相等,得到点E、F的横坐标相等,从而进行分析即可.【详解】解:由直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,求出A、B、C的坐标分别为,将点D(0,-1)代入得到,又△BDE与△BDF的面积相等,即知点E、F的横坐标相等,且直线分别交、于点E、F,可知点E、F为关于原点对称,即知坡度为45°,斜率为.故k=.【点睛】本题考查一次函数图像性质与几何图形的综合问题,熟练掌握一次函数图像性质以及等面积三角形等底等高的概念进行分析是解题关键.18、4:1【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,∴.故答案为:4:1.【点睛】本题考查了相似三角形的性质,牢记相似三角形(多边形)的周长的比等于相似比是解题的关键.三、解答题(共78分)19、(1)30°;(2)18°【分析】(1)连接OC,根据已知条件得出,,根据平行线的性质得出,进而求得答案(2)连接EB,得出,从而得出,与为同弧所对的角,因此两角相等.【详解】解:(1)连接,是的切线,,,,,,,(2)连接,是的直径,,,,,,【点睛】本题是一道关于圆的综合性题目,考查到的知识点有圆的切线定理,平行线的性质,等边三角形的判定以及圆周角定理等,通过作辅助线综合分析是解题的关键.20、(1)12m或16m;(2)195.【分析】(1)、根据AB=x可得BC=28-x,然后根据面积列出一元二次方程求出x的值;(2)、根据题意列出S和x的函数关系熟,然后根据题意求出x的取值范围,然后根据函数的性质求出最大值.【详解】(1)、∵AB=xm,则BC=(28﹣x)m,∴x(28﹣x)=192,解得:x1=12,x2=16,答:x的值为12m或16m(2)、∵AB=xm,∴BC=28﹣x,∴S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是16m和6m,∵28-x≥15,x≥6∴6≤x≤13,∴当x=13时,S取到最大值为:S=﹣(13﹣14)2+196=195,答:花园面积S的最大值为195平方米.【点睛】题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.21、(2)(2)P(,)【详解】解:(2)∵OA=2,OC=2,∴A(-2,0),C(0,2).将C(0,2)代入得c=2.将A(-2,0)代入得,,解得b=,∴抛物线的解析式为;(2)如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.设直线AD的解析式为y=kx+b,将A(-2,0),D(2,2)分别代入解析式得,,解得,,∴直线AD解析式为y=x+2.∵二次函数的对称轴为,∴当x=时,y=×+2=.∴P(,).22、(1);(2)①;②存在,当时,以点,,,为顶点的四边形是平行四边形.【分析】(1)把,带入即可求得解析式;(2)先用含m的代数式表示点P、M的坐标,再根据三角形的面积公式求出∆PCM的面积和m的函数关系式,然后求出∆PCM的最大值;(3)由平行四边形的性质列出关于t的一元二次方程,解方程即可得到结论【详解】解:(1)∵抛物线过点、点,∴解得∴抛物线的解析式为.(2)∵抛物线与轴交于点,∴可知点坐标为.∴可设直线的解析式为.把点代人中,得,∴.∴直线的解析式为.①∵轴,∴.设,则,且.∴,∴.∴.∴当时,的面积最大,最大值为.②存在.由题可知,.∴当时,以点,,,为顶点的四边形是平行四边形.已知的长为,所以,.∴.∴当时,解得(不符合题意,舍去),;当时,,∴此方程无实数根.综上,当时,以点,,,为顶点的四边形是平行四边形.【点睛】本题考查的是二次函数的性质,待定系数法求函数解析式、平行四边形的判定,正确求出二次函数解析式,利用配方法把一般式化成顶点式,求出函数的最值是解题的关键23、(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为1.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=CE,PM∥CE,PN=BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为1.故答案为△PMN周长的最小值为3,最大值为1点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论