版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省嘉兴市嘉善县九年级数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若二次函数的x与y的部分对应值如下表,则当时,y的值为xy353A.5 B. C. D.2.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100° B.110° C.115° D.120°3.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.34.一元二次方程2x2+3x+5=0的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根5.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是()A.2 B.3 C.4 D.56.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:DB=4:5,下列结论中正确的是A. B. C. D.7.已知如图,则下列4个三角形中,与相似的是()A. B.C. D.8.以下五个图形中,是中心对称图形的共有()A.2个 B.3个 C.4个 D.5个9.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b>解集为()A.x>2或﹣1<x<0 B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>210.已知反比例函数,下列结论中不正确的是()A.图象必经过点 B.随的增大而增大C.图象在第二,四象限内 D.若,则11.如图,在中,,且DE分别交AB,AC于点D,E,若,则△和△的面积之比等于()A. B. C. D.12.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为()A.(4,﹣2) B.(6,﹣2) C.(8,﹣2) D.(10,﹣2)二、填空题(每题4分,共24分)13.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.14.如图,已知点P是△ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC于点E,作DF//BC,交AB于点F,若四边形BEDF的面积为4,则△ABC的面积为__________15.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,∠BEF=70°,则∠ABE=_____度.16.如图,抛物线(是常数,),与轴交于两点,顶点的坐标是,给出下列四个结论:①;②若,,在抛物线上,则;③若关于的方程有实数根,则;④,其中正确的结论是__________.(填序号)17.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是______.18.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为_________米.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点B的坐标是(2,2),将线段OB绕点O顺时针旋转120°,点B的对应点是点B1.(1)①求点B绕点O旋转到点B1所经过的路程长;②在图中画出1,并直接写出点B1的坐标是;(2)有7个球除了编号不同外,其他均相同,李南和王易设计了如下的一个规则:装入不透明的甲袋,装入不透明的乙袋,李南从甲袋中,王易从乙袋中,各自随机地摸出一个球(不放回),把李南摸出的球的编号作为横坐标x,把王易摸出的球的编号作为纵坐标y,用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(3)李南和王易各取一次小球所确定的点(x,y)落在1上的概率是.20.(8分)如图,是直径AB所对的半圆弧,点C在上,且∠CAB=30°,D为AB边上的动点(点D与点B不重合),连接CD,过点D作DE⊥CD交直线AC于点E.小明根据学习函数的经验,对线段AE,AD长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点D在AB上的不同位置,画图、测量,得到线段AE,AD长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9AE/cm0.000.410.771.001.151.000.001.004.04…AD/cm0.000.501.001.412.002.453.003.213.50…在AE,AD的长度这两个量中,确定_______的长度是自变量,________的长度是这个自变量的函数;(2)在下面的平面直角坐标系中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为________cm(结果精确到0.1).21.(8分)(1)计算:;(2)解分式方程:;(3)解不等式组:.22.(10分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?23.(10分)如图,在平面直角坐标系xoy中,直线与轴,轴分别交于点A和点B.抛物线经过A,B两点,且对称轴为直线,抛物线与轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S;抛物线上是否还存在其它点M,使△ABM的面积等于中的最大值S,若存在,求出满足条件的点M的坐标;若不存在,说明理由;(3)若点F为线段OB上一动点,直接写出的最小值.24.(10分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.25.(12分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:1.73,结果精确到0.01米)26.某校要求九年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解九年级学生参加球类活动的整体情况,现以九年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:九年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6486根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校九年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的4位同学中,有2位男同学(A,B)和2位女同学(C,D),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】由表可知,抛物线的对称轴为,顶点为,再用待定系数法求得二次函数的解析式,再把代入即可求得y的值.【详解】设二次函数的解析式为,当或时,,由抛物线的对称性可知,,,把代入得,,二次函数的解析式为,当时,.故选D.【点睛】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为,顶点为,是本题的关键.2、B【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.3、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,检验:当x=1时,x2﹣4≠0,所以x=1是原方程的解;当x=-2时,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解为x=1.故选:D.【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.4、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=9﹣4×2×5=﹣31<0,故选:D.【点睛】本题考查的是一元二次方程系数与根的关系,当时,有两个不相等的实数根;当时,有两个相等的实数根;当时,没有实数根.5、B【解析】设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x,∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B的对应点B′的横坐标是1.故选B.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.6、B【分析】根据平行线分线段成比例,相似三角形性质,以及合比性质,分别对每个选项进行判断,即可得到答案.【详解】解:如图,在△ABC中,DE∥BC,AD∶DB=4∶5,则∴△ADE∽△ABC,∴,故A错误;则,故B正确;则,故C错误;则,故D错误.故选择:B.【点睛】本题考查了相似三角形的性质,平行线分线段成比例,合比性质,解题的关键是熟练掌握平行线分线段成比例的性质.7、C【分析】根据相似三角形的判定定理逐一分析即可.【详解】解:∵AB=AC=6,∠B=75°∴∠B=∠C=75°∴∠A=180°-∠B-∠C=30°,对于A选项,如下图所示∵,但∠A≠∠E∴与△EFD不相似,故本选项不符合题意;对于B选项,如下图所示∵DE=DF=EF∴△DEF是等边三角形∴∠E=60°∴,但∠A≠∠E∴与△EFD不相似,故本选项不符合题意;对于C选项,如下图所示∵,∠A=∠E=30°∴∽△EFD,故本选项符合题意;对于D选项,如下图所示∵,但∠A≠∠D∴与△DEF不相似,故本选项不符合题意;故选C.【点睛】此题考查的是相似三角形的判定,掌握有两组对应边对应成比例,且夹角相等的两个三角形相似是解决此题的关键.8、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】解:从左起第2、4、5个图形是中心对称图形.故选:B.【点睛】本题考查了中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.9、A【解析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x的取值范围即可.【详解】解:由图可知,x>2或﹣1<x<0时,ax+b>.故选A.【点睛】本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键.10、B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可判断出B、C、D的正误.【详解】A、反比例函数,所过的点的横纵坐标之积=−6,此结论正确,故此选项不符合题意;B、反比例函数,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数,当x>1时图象在第四象限,y随x的增大而增大,故x>1时,−6<y<0;故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.11、B【解析】由DE∥BC,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,进而可得出△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方即可求出结论.【详解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故选B.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.12、A【分析】作BG⊥x轴于点G,DH⊥x轴于点H,根据位似图形的概念得到△ABC∽△EDC,根据相似是三角形的性质计算即可.【详解】作BG⊥x轴于点G,DH⊥x轴于点H,则BG∥DH,∵△ABC和△EDC是以点C为位似中心的位似图形,∴△ABC∽△EDC,∵△ABC和△EDC的周长之比为1:2,∴=,由题意得,CG=3,BG=1,∵BG∥DH,∴△BCG∽△DCH,∴===,即==,解得,CH=6,DH=2,∴OH=CH﹣OC=4,则点D的坐标为为(4,﹣2),故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.二、填空题(每题4分,共24分)13、3.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路线长为3.故答案为:3.【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.14、9【分析】连接CP交AB于点H,利用点P是重心得到=,得出S△DEC=4S△AFD,再由DE//BF证出,由此得到S△DEC=S△ABC,继而得出S四边形BEDF=S△ABC,从而求出△ABC的面积.【详解】如图,连接CP交AB于点H,∵点P是△ABC的重心,∴,∴,∵DF//BE,∴△AFD∽△DEC,∴S△DEC=4S△AFD,∵DE//BF,∴,△DEC∽△ABC,∴S△ABC=S△DEC,∴S四边形BEDF=S△ABC,∵四边形BEDF的面积为4,∴S△ABC=9故答案为:9.【点睛】此题考察相似三角形的判定及性质,做题中首先明确重心的意义,连接CP交AB于点H是解题的关键,由此得到边的比例关系,再利用相似三角形的性质:面积的比等于相似比的平方推导出几部分图形的面积之间的关系,得到三角形ABC的面积.15、1【分析】根据折叠的性质,得∠DEF=∠BEF=70°,结合平角的定义,得∠AEB=40°,由AD∥BC,即可求解.【详解】∵将长方形纸片ABCD折叠,使点D与点B重合,∴∠DEF=∠BEF=70°,∵∠AEB+∠BEF+∠DEF=180°,∴∠AEB=180°﹣2×70°=40°.∵AD∥BC,∴∠EBF=∠AEB=40°,∴∠ABE=90°﹣∠EBF=1°.故答案为:1.【点睛】本题主要考查折叠的性质,平角的定义以及平行线的性质定理,掌握折叠的性质,是解题的关键.16、①②④【分析】根据二次函数的图象和性质逐一对选项进行分析即可.【详解】①∵∴即,故①正确;②由图象可知,若,,在抛物线上,则,故②正确;③∵抛物线与直线有交点时,即有解时,要求所以若关于的方程有实数根,则,故③错误;④当时,∵∴,故④正确.故答案为①②④【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.17、1【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【详解】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×11=8,在Rt△OCB中,由勾股定理得:OC===1,故答案为:1.【点睛】此题考查勾股定理,垂径定理的应用,由垂径定理求出BC是解题的关键.18、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等进而得出答案.【详解】解:根据相同时刻的物高与影长成比例.设树的高度为,则,解得:.故答案为:1.【点睛】此题考查相似三角形的应用,解题关键在于掌握其性质定义.三、解答题(共78分)19、(1)①;②见解析,B1的坐标是(0,﹣4);(2)见详解;(3)【分析】(1)①根据勾股定理算出OB的长,再根据弧长公式算出线段OB绕着O点旋转到B1所经过的路径长;②由①得∠BOH=30°,结合图象得到旋转后的B1的坐标;(2)利用树状图得到所有可能的结果;(3)计算各点到原点的距离,可判断点落在1上的结果,即可求出概率.【详解】解:(1)①作BH⊥x轴于点H,∵点B的坐标是(2,2),∴BH=2,OH=2,∴OB==4,∴B绕点O旋转到点B1所经过的路程长==;②如图,1为所作,过B作BH⊥x轴,∵tan∠BOH=,∴∠BOH=30°,又∵∠BOB1=120°,∴∠HOB1=90°,∴点B1在y轴负半轴上由旋转性质可知OB=OB1==4,所以点B1的坐标是(0,﹣4);(2)画树状图为:共有12种等可能的结果:分别为(4,0)(4,-1)(4,-2)(4,-6)()()()()(,0)(,-1)(,-2)(,-6);(3)(4,0)到原点的距离为:4,(4,-1)到原点的距离为:=,(4,-2)到原点的距离为:=,(4,-6)到原点的距离为=,()到原点的距离是,()到原点的距离是=,()到原点的距离为:=4,()到原点的距离是=4,(,0)到原点的距离为,(,-1)到原点的距离为=,(,-2)到原点的距离是=,(,-6)到原点的距离为=,点(x,y)落在1上的结果数为2,所以点(x,y)落在1上的概率==.【点睛】本题考查作图—旋转变换、旋转性质、概率问题树状图、弧长等问题,难度适中.20、(1)AD,AE;(2)画图象见解析;(3)2.2,.【分析】(1)根据函数的定义可得答案;
(2)根据题意作图即可;
(3)满足AE=AD条件,实际上可以转化为正比例函数y=x.【详解】解:(1)根据题意,D为AB边上的动点,
∴AD的长度是自变量,AE的长度是这个自变量的函数;
∴故答案为:AD,AE.
(2)根据已知数据,作图得:
(3)当AE=AD时,y=x,在(2)中图象作图,并测量两个函数图象交点得:AD=2.2或3.3
故答案为:2.2或3.3【点睛】本题是圆的综合题,以几何动点问题为背景,考查了函数思想和数形结合思想.在(3)中将线段的数量转化为函数问题,设计到了转化的数学思想.21、(1);(2);(3).【分析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,特殊角的三角函数值,以及二次根式性质计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】解:(1),,,.(2),去分母得:,解得:,经检验是原方程的根.(3),解不等式①得,解不等式②得,∴原不等式组的解集为为:.【点睛】此题考查了解分式方程,以及实数的运算、不等式组的解法,熟练掌握运算法则是解本题的关键.22、(1)60;(2)1【分析】(1)设每天销售A种软件个,B种软件个,分别根据每天的销售额共为112000元,总利润为28000元,列方程组即可解得;(2)由这两种软件每天销售总件数不变,则设A种软件每天多销售个,则B种软件每天少销售个,总利润为,根据:每种软件的总利润=每个利润销量,得到二次函数求最值即可.【详解】(1)设每天销售A种软件个,B种软件个.由题意得:,解得:,.∴该公司每天销售这两种软件共60个.(2)设这两种软件一天的总利润为,A种软件每天多销售个,则B种软件每天少销售个.W==(0≤m≤12).当时,的值最大,且最大值为1.∴这两种软件一天的总利润最多为1元.【点睛】本题考查了二元一次方程组的应用,二次函数的应用,解题的关键是读懂题目的意思,根据题干找出合适的等量关系.23、(1);(2)E(-2,-4),4;②存在,;(3)【分析】(1)求出AB两点坐标,利用待定系数法即可求解;(2)设点E的坐标为,当△ABE的面积最大时,点E在抛物线上且距AB最远,此时E所在直线与AB平行,且与抛物线只有一个交点.设点E所在直线为l:y=-x+b,与二次函数联立方程组,根据只有一个交点,得,求出b,进而求出点E坐标;抛物线上直线AB上方还存在其它点M,使△ABM的面积等于中的最大值S,此时点M所在直线与直线AB平行,且与直线l到直线AB距离相等,求出直线解析式,与二次函数联立方程组,即可求解;(3)如图,作交x轴于点G,作FP⊥BG,于P,得到,所以当C、F、P在同一直线上时,有最小值,作CH⊥GB于H,求出CH即可.【详解】解:(1)在中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线,可得方程组解方程组可得∴抛物线的函数表达式为(2)①设点E的坐标为,当△ABE的面积最大时,点E在抛物线上且距AB最远,此时E所在直线与AB平行,且与抛物线只有一个交点.设点E所在直线为l:y=-x+b.联立得方程,消去y得,据题意;解之得,直线l的解析式为y=-x-6,联立方程,解得,∴点E(-2,-4),过E作y轴的平行线可求得△ABE面积的最大值为4.②抛物线上直线AB上方还存在其它点M,使△ABM的面积等于中的最大值S,此时点M所在直线与直线AB平行,且与直线l到直线AB距离相等,易得直线是直线l向上平移4个单位,∴解析式为y=-x-2,与二次函数联立方程组可得方程组解之得∴存在两个点,(3)如图,作交x轴于点G,作FP⊥BG于P,则是直角三角形,∴,∴,∴当C、F、P在同一直线上时,有最小值,作CH⊥GB于H,在中,∵∴,,∵A(-4,0),抛物线对称轴为直线,∴点C坐标为(2,0),∴,∴在中,,∴的最小值为.【点睛】本题为二次函数综合题,考查了待定系数法,二次函数与一元二次方程关系,二次函数与面积问题,三角函数,求两线段和最小值问题.理解好函数与方程(组)关系,垂线段最短是解题关键.24、(1)40,补图详见解析;(2)108°;(3).【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省哈尔滨市师大附中2023级高二上学期10月阶段性考试历史试卷
- 陕西省咸阳市2017-2018学年高一上学期期末考试语文试题
- 《蜀道难》原文及翻译蜀道难原文带拼音
- 第二章-热力学第一定律-1
- 2024年聘请常年法律顾问合同(四)
- 2024年鹤岗资格证客运题库
- 专家咨询协议书2024年
- 2024年内蒙古客运资格证模拟题库及答案
- 2024年哈尔滨客运资格证节能驾驶考试题
- 2024年汕头客运从业资格证考试答案
- 海上风电基本术语(中英文对照)
- 软件项目管理大作业
- 行政事业单位报销流程
- 银行分行“职工之家”活动室管理暂行规定
- 安全防范工程建设及维护保养费用预算编制办法
- 水的饱和蒸汽压表
- 代持股权协议书.doc
- 《提高小学英语写作能力的策略研究》方案
- 监理公司业绩提成办法
- 综合门诊部设置标准
- 工程项目技术管理人员批评与自我批评
评论
0/150
提交评论