版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州昆山市石牌中学2025届九上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A. B. C. D.2.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是()A. B. C. D.3.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°4.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n-1 C.()n-1 D.n5.下列计算错误的是()A. B. C. D.6.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<28.如图,已知是的直径,,则的度数为()A. B. C. D.9.如图,这是二次函数的图象,则的值等于()A. B. C. D.10.如图,直线////,若AB=6,BC=9,EF=6,则DE=()A.4 B.6 C.7 D.911.3的倒数是()A. B. C. D.12.如图,在△ABC中,点D在边AB上,且AD=5cm,DB=3cm,过点D作DE∥BC,交边AC于点E,将△ADE沿着DE折叠,得△MDE,与边BC分别交于点F,G.若△ABC的面积为32cm2,则四边形DEGF的面积是()A.10cm2 B.10.5cm2 C.12cm2 D.12.5cm2二、填空题(每题4分,共24分)13.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.14.如图,在平面直角坐标系中,为线段上任一点,作交线段于,当的长最大时,点的坐标为_________.15.用长的铁丝做一个长方形框架,设长方形的长为,面积为,则关于的函数关系式为__________.16.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是17.如图,菱形的边长为4,,E为的中点,在对角线上存在一点,使的周长最小,则的周长的最小值为__________.18.如图,已知AB是半圆O的直径,∠BAC=20°,D是弧AC上任意一点,则∠D的度数是_________.三、解答题(共78分)19.(8分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.20.(8分)如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成面积为200m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.21.(8分)如图,二次函数(其中)的图象与x轴分别交于点A、B(点A位于B的左侧),与y轴交于点C,过点C作x轴的平行线CD交二次函数图像于点D.(1)当m2时,求A、B两点的坐标;(2)过点A作射线AE交二次函数的图像于点E,使得BAEDAB.求点E的坐标(用含m的式子表示);(3)在第(2)问的条件下,二次函数的顶点为F,过点C、F作直线与x轴于点G,试求出GF、AD、AE的长度为三边长的三角形的面积(用含m的式子表示).22.(10分)从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.23.(10分)如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.(1)求抛物线的函数解析式;(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(10分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.(1)求抛物线的解析式;(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.25.(12分)从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.26.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.
参考答案一、选择题(每题4分,共48分)1、D【解析】根据点与圆的位置关系判断得出即可.【详解】∵点P在圆内,且⊙O的半径为4,
∴0≤d<4,
故选D.【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r.2、C【分析】由题图图形,旋转或平移,分别判断、解答即可.【详解】A、由图形顺时针旋转90°,可得出;故本选项不符合题意;
B、由图形逆时针旋转90°,可得出;故本选项不符合题意;
C、不能由如图图形经过旋转或平移得到;故本选项符合题意;
D、由图形顺时针旋转180°,而得出;故本选项不符合题意;
故选:C.【点睛】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.3、C【分析】根据弧长公式,即可求解【详解】设圆心角是n度,根据题意得,解得:n=1.故选C【点睛】本题考查了弧长的有关计算.4、B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解.【详解】如图作正方形边的垂线,由ASA可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的,即是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.5、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A:,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据,进行判断.6、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.8、B【分析】根据同弧所对的圆周角相等可得∠E=∠B=40°,再根据直径所对的圆周角是直角得到∠ACE=90°,最后根据直角三角形两锐角互余可得结论.【详解】∵在⊙O中,∠E与∠B所对的弧是,∴∠E=∠B=40°,∵AE是⊙O的直径,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故选:B.【点睛】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出∠E=40°,是解此题的关键.9、D【分析】由题意根据二次函数图象上点的坐标特征,把原点坐标代入解析式得到=0,然后解关于a的方程即可.【详解】解:因为二次函数图象过原点,所以把(0,0)代入二次函数得出=0,解得或,又因为二次函数图象开口向下,所以.故选:D.【点睛】本题考查二次函数图象上点的坐标特征,根据二次函数图象上点的坐标满足其解析式进行分析作答即可.10、A【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可.【详解】解:∵////,∴,∵AB=6,BC=9,EF=6,∴,∴DE=4故选:A【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.11、C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12、B【分析】根据相似多边形的性质进行计算即可;【详解】∵DE∥BC,∴,,又由折叠知,∴,∴DB=DF,∵,,∴,即,∴,∴,同理可得:,∴四边形DEGF的面积.故答案选B.【点睛】本题主要考查了相似多边形的性质,准确计算是解题的关键.二、填空题(每题4分,共24分)13、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:
共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,
故两人一起做同样手势的概率是的概率为.故答案为:.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.14、(3,)【分析】根据勾股定理求出AB,由DE⊥BD,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,利用相似三角形求出x,再根据三角形相似求出点E的横纵坐标即可.【详解】∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∵DE⊥BD,∴∠BDE=90°,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,则BF=EF=DF=,∵∠ADF=∠AOB=90°,∴DF∥OB∴△ADF∽△AOB∴∴,解得x=,过点E作EG⊥x轴,∴EG∥OB,∴△AEG∽△ABO,∴,∴,∴EG=,AG=1,∴OG=OA-AG=4-1=3,∴E(3,),故答案为:(3,).【点睛】此题考查圆周角定理,相似三角形的判定及性质,勾股定理,本题借助半圆解题使题中的DE⊥BD所成的角确定为圆周角,更容易理解,是解此题的关键.15、或【分析】易得矩形另一边长为周长的一半减去已知边长,那么矩形的面积等于相邻两边长的积.【详解】由题意得:矩形的另一边长=24÷2−x=12−x,则y=x(12−x)=−x2+12x.故答案为或【点睛】本题考查了二次函数的应用,掌握矩形周长与面积的关系是解题的关键.16、.【解析】试题分析:能构成三角形的情况为:3,4,5;3,4,6;3,5,6;4,5,6这四种情况.直角三角形只有3,4,5一种情况.故能够成直角三角形的概率是.故答案为.考点:1.勾股定理的逆定理;2.概率公式.17、+2【分析】连接DE,因为BE的长度固定,所以要使△PBE的周长最小,只需要PB+PE的长度最小即可.【详解】解:连结DE.∵BE的长度固定,∴要使△PBE的周长最小只需要PB+PE的长度最小即可,∵四边形ABCD是菱形,∴AC与BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小长度为DE的长,∵菱形ABCD的边长为4,E为BC的中点,∠DAB=60°,∴△BCD是等边三角形,又∵菱形ABCD的边长为4,∴BD=4,BE=2,DE=,∴△PBE的最小周长=DE+BE=,故答案为:.【点睛】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.18、110°【解析】试题解析:∵AB是半圆O的直径故答案为点睛:圆内接四边形的对角互补.三、解答题(共78分)19、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将x=h代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a>0可得出当x=h=1时y1=a(x﹣h)2+2取得最小值2,结合当t≤x≤t+3时二次函数y1=a(x﹣h)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1=y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出>1或<﹣1,再结合1≤k≤3,即可求出a的取值范围.【详解】(1)∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2),当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点;(2)∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2,又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1;(3)令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【点睛】本题考查了二次函数的性质、一次函数图象上点的坐标特征、二次函数的最值、解一元二次方程以及解不等式,解题的关键是:(1)利用二次函数的性质及一次函数图象上点的坐标特征,证出直线l恒过抛物线C的顶点;(2)利用二次函数的性质结合二次函数的最值,找出关于t的一元一次不等式组;(3)令y1=y2,求出点P,Q的横坐标.20、(1)长和宽分别为18m,10m;(2)不能,理由见解析【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【详解】解:(1)设AB=x,则BC=38-2x.根据题意,得x(38-2x)=180,解得x1=10,x2=9.当x=10时,38-2x=18;当x=9时,38-2x=20>19,不符合题意,舍去.答:若围成的面积为180m2,自行车车棚的长和宽分别为18m,10m.(2)不能,理由如下:根据题意,得x(38-2x)=200,整理,得x2-19x+100=0.∵Δ=b2-4ac=361-400=-39<0,∴此方程没有实数根.∴不能围成面积为200m2的自行车车棚.【点睛】本题考查一元二次方程的应用,熟练掌握计算法则是解题关键.21、(1),;(2);(3)【分析】(1)求图象与x轴交点,即函数y值为零,解一元二次方程即可;(2)过作轴,过作轴,先求出D点坐标为,设E点为,即可列等式求m的值得E点坐标;(3)由直线的方程:,得G点坐标,再用m的表达式分别表达GF、AD、AE即可.【详解】(1)当时,,∵图象与x轴分别交于点A、B∴时,∴,(2)∵,轴∴过作轴,过作轴∵∴设E∴(3)以GF、BD、BE的长度为三边长的三角形是直角三角形.理由如下:二次函数的顶点为F,则F的坐标为(−m,4),过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=,∴=,∴=,∵OC=3,HF=4,OH=m,∴,∴OG=3m.∴,∴∴、、能构成直角三角形面积是所以、、能构成直角三角形面积是【点睛】此题考查二次函数综合题,解题关键在于掌握二次函数图象的问题转换.22、表见解析,【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】解:列表如下:﹣3﹣124﹣3﹣﹣﹣(﹣1,﹣3)(2,﹣3)(4,﹣3)﹣1(﹣3,﹣1)﹣﹣﹣(2,﹣1)(4,﹣1)2(﹣3,2)(﹣1,2)﹣﹣﹣(4,2)4(﹣3,4)(﹣1,4)(2,4)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有4种,∴该点在第二象限的概率为=.【点睛】本题主要考查了列表法或树状图法求概率,熟练的用列表法或树状图法列出所有的情况数是解题的关键.23、(1);(2)存在,D的坐标为(2,6);(3)存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,点M的坐标为:(2,0)或(6,0)或(,0)或(,0).【分析】(1)根据点,利用待定系数法求解即可;(2)先根据函数解析式求出点C、D坐标,再将过点D作y轴的平行线交BC于点E,利用待定系数法求出直线BC的函数解析式,从而得出点E坐标,然后根据得出的面积表达式,最后利用二次函数的性质求出的面积取最大值时m的值,从而可得点D坐标;(3)根据平行四边形的定义分两种情况:BD为平行四边形的边和BD为平行四边形的对角线,然后先分别根据平行四边形的性质求出点N坐标,从而即可求出点M坐标.【详解】(1)∵抛物线经过点∴解得故抛物线的解析式为;(2)的面积存在最大值.求解过程如下:,当时,由题意,设点D坐标为,其中如图1,过点D作y轴的平行线交BC于点E设直线BC的解析式为把点代入得解得∴直线BC的解析式为∴可设点E的坐标为由二次函数的性质可知:当时,随m的增大而增大;当时,随m的增大而减小则当时,取得最大值,最大值为6此时,故的面积存在最大值,此时点D坐标为;(3)存在.理由如下:由平行四边形的定义,分以下两种情况讨论:①当BD是平行四边形的一条边时如图2所示:M、N分别有三个点设点∴点N的纵坐标为绝对值为6即解得(与点D重合,舍去)或或则点的横坐标分别为∴点M坐标为或或即点M坐标为或或②如图3,当BD是平行四边形的对角线时∴此时,点N与C重合,,且点M在点B右侧,即综上,存在这样的点M,使得以点为顶点的四边形是平行四边形.点M坐标为或或或.【点睛】本题考查了利用待定系数法求函数的解析式、二次函数的图象与性质、平行四边形的定义与性质等知识点,较难的是题(3),依据平行四边形的定义,正确分两种情况讨论是解题关键.24、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐标,把A、B的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.根据计算即可;(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①点E在F的左边;②点E在F的右边.【详解】(3)当x=0时y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).当y=0时x=4,∴B(4,0).把A、B坐标代入得解得:,∴抛物线的解析式为.(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.综上所述:CP的值为3或.【点睛】本题是二次函数的综合题目,涉及了相似三角形的判定与性质、平行四边形的性质,解答本题需要我们熟练各个知识点的内容,注意要分类讨论.25、(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《物理光学》课程教学大纲
- 2024年低价乡下小院出租合同范本
- 2024年出售东电楼房合同范本大全
- 2024年承接土方业务合同范本
- IMF报告:亚太地区经济展望报告
- 浙江省强基联盟2024-2025学年高二上学期11月联考物理试题(含解析)
- 2024新版企业招标承包经营合同
- 2024店面出租合同范本
- 2024个人借款合同范本的模板
- 2024至2030年中国移动感应器数据监测研究报告
- 中国铁路国际有限公司招聘考试试卷2022
- DB34∕T 2290-2022 水利工程质量检测规程
- 国开(河北)2024年《公文写作》形考作业4答案
- 电信行业移动通信网络质量提升方案
- 2021年山东省职业院校技能大赛导游服务赛项-导游英语口语测试题库
- 古代小说戏曲专题-形考任务2-国开-参考资料
- 文印竞标合同范本
- 2024至2030年中国汽车EPS无刷电机行业市场前景预测与发展趋势研究报告
- 人教版道德与法治五年级上册全册单元测试卷课件
- 2024-2030年中国聚醚醚酮树脂行业市场发展趋势与前景展望战略分析报告
- 2019版外研社高中英语必选择性必修一-四单词
评论
0/150
提交评论