辽宁省阜新实验中学2025届九上数学期末教学质量检测模拟试题含解析_第1页
辽宁省阜新实验中学2025届九上数学期末教学质量检测模拟试题含解析_第2页
辽宁省阜新实验中学2025届九上数学期末教学质量检测模拟试题含解析_第3页
辽宁省阜新实验中学2025届九上数学期末教学质量检测模拟试题含解析_第4页
辽宁省阜新实验中学2025届九上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省阜新实验中学2025届九上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.2.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B. C.-1 D.+13.下列事件中,是随机事件的是()A.任意画两个圆,这两个圆是等圆 B.⊙O的半径为5,OP=3,点P在⊙O外C.直径所对的圆周角为直角 D.不在同一条直线上的三个点确定一个圆4.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣) B.(﹣1,) C.(﹣,1) D.(,﹣1)5.下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查6.已知点P在线段AB上,且AP∶PB=2∶3,那么AB∶PB为()A.3∶2 B.3∶5 C.5∶2 D.5∶37.下列一元二次方程中,有一个实数根为1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=08.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B. C. D.9.如图,已知则添加下列一个条件后,仍无法判定的是()A. B. C. D.10.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为11.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(-2,2) B.(-2,4) C.(-2,2) D.(2,2)12.二次函数y=-2(x+1)2+5的顶点坐标是()A.-1 B.5 C.(1,5) D.(-1,5)二、填空题(每题4分,共24分)13.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.14.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,则图中阴影部分的面积为______.15.计算:×=______.16.已知:是反比例函数,则m=__________.17.将抛物线y=x2+2x向右平移1个单位后的解析式为_____.18.如图,BA,BC是⊙O的两条弦,以点B为圆心任意长为半径画弧,分别交BA,BC于点M,N:分别以点M,N为圆心,以大于为半径画弧,两弧交于点P,连接BP并延长交于点D;连接OD,OC.若,则等于__________.三、解答题(共78分)19.(8分)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.(1)求证:;(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;(3)连接BH,当点E运动到AD的何位置时有?20.(8分)如图,四边形ABCD内接于⊙O,∠BOD=140°,求∠BCD的度数.21.(8分)已知菱形的两条对角线长度之和为40厘米,面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x取何值时,菱形的面积最大,最大面积是多少?22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.23.(10分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.24.(10分)一个布袋中有红、黄、绿三种颜色的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下它的颜色.(1)试用树形图或列表法中的一种列举出这两次摸出球的颜色所有可能的结果;(2)求两次摸出球中至少有一个绿球的概率.25.(12分)如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.26.已知反比例函数,(k为常数,).(1)若点在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.

参考答案一、选择题(每题4分,共48分)1、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.2、C【解析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.3、A【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A.任意画两个圆,这两个圆是等圆,属于随机事件,符合题意;B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;C.直径所对的圆周角为直角,属于必然事件,不合题意;D.不在同一条直线上的三个点确定一个圆,属于必然事件,不合题意;故选:A.【点睛】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=OB=1,OH=OB=,∴B(﹣,1),∴点B关于原点O的对称点坐标为(,﹣1).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.5、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行判断.【详解】A、对某飞机上旅客随身携带易燃易爆危险物品情况的调查适合采用全面调查方式;B、对我国首艘国产“002型”航母各零部件质量情况的调查适合采用全面调查方式;C、对渝北区某中学初2019级1班数学期末成绩情况的调查适合采用全面调查方式;D、对全国公民知晓“社会主义核心价值观”内涵情况的调查适合采用抽样调查方式;故选:D.【点睛】本题主要考查抽样调查的意义和特点,理解抽样调查的意义是解题的关键.6、D【分析】根据比例的合比性质直接求解即可.【详解】解:由题意AP∶PB=2∶3,AB∶PB=(AP+PB)∶PB=(2+3)∶3=5∶3;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答.7、D【分析】由题意,把x=1分别代入方程左边,然后进行判断,即可得到答案.【详解】解:当x=1时,分别代入方程的左边,则A、1+2=,故A错误;B、1-4+4=1,故B错误;C、1+4+10=15,故C错误;D、1+4-5=0,故D正确;故选:D.【点睛】本题考查了一元二次方程的解,解题的关键是分别把x=1代入方程进行解题.8、B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.9、A【分析】先根据∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,

∴∠BAC=∠DAE.A.,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项符合题意;B.,∴△ABC∽△ADE,故本选项不符合题意;C.∴△ABC∽△ADE,故本选项不符合题意;D.∴△ABC∽△ADE,故本选项不符合题意;故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10、C【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【详解】A、由原方程,得,等式的两边同时加上一次项系数2的一半的平方1,得;故本选项正确;B、由原方程,得,等式的两边同时加上一次项系数−7的一半的平方,得,,故本选项正确;C、由原方程,得,等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;故本选项错误;D、由原方程,得3x2−4x=2,化二次项系数为1,得x2−x=等式的两边同时加上一次项系数−的一半的平方,得;故本选项正确.故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.11、A【分析】作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,∠BOA=60°,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.【详解】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(-4,0),O点坐标为(0,0),在Rt△BOC中,BC=,∴B点坐标为(-2,2);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(-2,2),故选:A.【点睛】本题考查了坐标与图形变化-旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.12、D【解析】直接利用顶点式的特点写出顶点坐标.【详解】因为y=2(x+1)2-5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-1,5).故选:D.【点睛】主要考查了求抛物线的顶点坐标的方法,熟练掌握顶点式的特点是解题的关键.二、填空题(每题4分,共24分)13、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.14、【分析】根据题意,作出合适的辅助线,由图可知,阴影部分的面积=△CBF的面积,根据题目的条件和图形,可以求得△BCF的面积,从而可以解答本题.【详解】连接OD、OF、BF,作DE⊥OA于点E,∵ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等边三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等边三角形,∵弓形DF的面积=弓形FB的面积,DE=OD•sin60°=,∴图中阴影部分的面积为:=,故答案为:.【点睛】本题考查了求阴影部分面积的问题,掌握三角形面积公式是解题的关键.15、1.【解析】×==1,故答案为1.16、-2【解析】根据反比例函数的定义.即y=(k≠0),只需令m2-5=-1、m-2≠0即可.【详解】因为y=(m−2)是反比例函数,所以x的指数m2−5=−1,即m2=4,解得:m=2或−2;又m−2≠0,所以m≠2,即m=−2.故答案为:−2.【点睛】本题考查的知识点是反比例函数的定义,解题的关键是熟练的掌握反比例函数的定义.17、y=x2﹣1.【分析】通过配方法先求出原抛物线的顶点坐标,继而得到平移后新抛物线的顶点坐标,然后利用顶点式即可求得新抛物线的解析式.【详解】∵y=x2+2x=(x+1)2-1,∴原抛物线的顶点为(-1,-1),∵将抛物线y=x2+2x向右平移1个单位得到新的抛物线,∴新抛物线的顶点为(0,-1),∴新抛物线的解析式为y=x2-1,故答案为:y=x2-1.【点睛】本题考查了抛物线的平移,得到原抛物线与新抛物线的顶点坐标是解题的关键.18、【分析】根据作图描述可知BD平分∠ABC,然后利用同弧所对的圆周角是圆心角的一半可求出∠CBD的度数,由∠ABD=∠CBD即可得出答案.【详解】根据作图描述可知BD平分∠ABC,∴∠ABD=∠CBD∵∠COD=70°∴∠BCD=∠COD=35°∴∠ABD=35°故答案为:35°.【点睛】本题考查了角平分线的作法,圆周角定理,判断出BD为角平分线,熟练掌握同弧所对的圆周角是圆心角的一半是解题的关键.三、解答题(共78分)19、(1)见解析;(2)当,有最大值;(3)当点E是AD的中点【分析】(1)由同角的余角相等得到∠ABE=∠CBG,从而全等三角形可证;(2)先证明△ABE∽△DEH,得到,即可求出函数解析式y=-x2+x,继而求出最值.(3)由(2),再由,可得,则问题可证.【详解】(1)证明:∵∠ABE+∠EBC=∠CBG+∠EBC=90°∴∠ABE=∠CBG在△AEB和△CGB中:∠BAE=∠BCG=90°,AB=BC,∠ABE=∠CBG∴△AEB≌△CGB(ASA)(2)如图∵四边形ABCD,四边形BEFG均为正方形∴∠A=∠D=90°,∠HEB=90°∴∠DEH+∠AEB=90°,∠DEH+∠DHE=90°∴∠DHE=∠AEB∴△ABE∽△DEH∴∴∴故当,有最大值(3)当点E是AD的中点时有△BEH∽△BAE.理由:∵点E是AD的中点时由(2)可得又∵△ABE∽△DEH∴,又∵∴又∠BEH=∠BAE=90°∴△BEH∽△BAE【点睛】本题结合正方形的性质考查二次函数的综合应用,以及正方形的性质和相似三角形的判定,解答关键是根据题意找出相似三角形构造等式.20、110°【分析】先根据圆周角定理得到∠A=∠BOD=70°,然后根据圆内接四边形的性质求∠BCD的度数.【详解】∵∠BOD=140°,∴∠A=∠BOD=70°,∴∠BCD=180°﹣∠A=110°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆内接四边形的性质.21、(1)S=﹣x2+20x,0<x<40;(2)当x=20时,菱形的面积最大,最大面积是1.【分析】(1)直接利用菱形面积公式得出S与x之间的关系式;(2)利用配方法求出最值即可.【详解】(1)由题意可得:,∵x为对角线的长,∴x>0,40﹣x>0,即0<x<40;(2),===,即当x=20时,菱形的面积最大,最大面积是1.【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键.22、(1)图见解析;(2)图见解析;路径长π.【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,OB==2点B旋转到点B2所经过的路径长==π.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、(1)每件衬衫应降价1元.(2)不可能,理由见解析【分析】(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.

(2)同样列出方程,若方程有实数根则可以,否则不可以.【详解】(1)设每件衬衫应降价x元.

根据题意,得(40-x)(1+2x)=110

整理,得x2-30x+10=0

解得x1=10,x2=1.

∵“扩大销售量,减少库存”,

∴x1=10应略去,

∴x=1.

答:每件衬衫应降价1元.

(2)不可能.理由如下:

令y=(40-x)(1+2x),当y=1600时,(40-x)(1+2x)=1600整理得x2-30x+400=0

∵△=900-4×400<0,方程无实数根.

∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.24、(1)详见解析;(2)【分析】(1)利用树状图列举出所有可能,注意是放回小球再摸一次;(2)列举出符合题意的各种情况的个数,再根据概率公式解答即可.【详解】(1)列树状图如下:故(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况(2)由树状图可知共有3×3=9种可能,“两次摸出球中至少有一个绿球”的有5种,所以概率是:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25、(1)CM=EM,CM⊥EM;(2)成立,理由见解析;(3)成立,理由见解析.【分析】(1)延长EM交AD于H,证明△FME≌△AMH,得到HM=EM,根据等腰直角三角形的性质可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论