版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,菱形在第一象限内,,反比例函数的图象经过点,交边于点,若的面积为,则的值为()A. B. C. D.42.下列各数:-2,,,,,,0.3010010001…,其中无理数的个数是()个.A.4 B.3 C.2 D.13.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.4.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为().A.3 B.4 C.5 D.65.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.6.已知三点在抛物线上,则的大小关系正确的是()A. B.C. D.7.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的最大整数是()A.1 B.0 C.﹣1 D.﹣28.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.1cm B.1.5cm C.2cm D.2.5cm9.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70° B.55° C.45° D.35°10.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A.5π B.12.5π C.20π D.25π二、填空题(每小题3分,共24分)11.边长为1的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为__________.12.如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.13.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.14.如图,圆锥的底面直径,母线的中点处有一食物,一只小蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为___________15.如图,是的中位线,是边上的中线,交于点,下列结论:①;②;③:④,其中正确的是______.(只填序号).16.抛物线的顶点坐标是___________.17.如图,在平行四边形ABCD中,点E在AD边上,且AE:ED=1:2,若EF=4,则CE的长为___18.使二次根式有意义的x的取值范围是_____.三、解答题(共66分)19.(10分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)20.(6分)如图,在中,,,点从点出发,沿以每秒的速度向点运动,同时点从点出发,沿以每秒的速度向点运动,设运动的时间为秒.(1)当为何值时,与相似?(2)当时,请直接写出的值.21.(6分)如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.(1)求证:△ADE≌△BCE;(2)已知AD=3,求矩形的另一边AB的值.22.(8分)先化简,再求代数式的值,其中23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.24.(8分)如图,BD是△ABC的角平分线,点E位于边BC上,已知BD是BA与BE的比例中项.(1)求证:∠CDE=∠ABC;(2)求证:AD•CD=AB•CE.25.(10分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)(1)作∠BAC的平分线,交BC于点O.(2)以O为圆心,OC为半径作圆.综合运用:在你所作的图中,(1)AB与⊙O的位置关系是_____.(直接写出答案)(2)若AC=5,BC=12,求⊙O的半径.26.(10分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】过A作AE⊥x轴于E,设OE=,则AE=,OA=,即菱形边长为,再根据△AOD的面积等于菱形面积的一半建立方程可求出,利用点A的横纵坐标之积等于k即可求解.【详解】如图,过A作AE⊥x轴于E,设OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形边长为由图可知S菱形AOCB=2S△AOD∴,即∴∴故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A点坐标是解决本题的关键.2、B【分析】无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,也就是说它是无限不循环小数.常见的无理数有大部分的平方根、π等.【详解】根据无理数的定义,下列各数:-2,,,,,,0.3010010001…,其中无理数是:,,0.3010010001…故选:B【点睛】考核知识点:无理数.理解无理数的定义是关键.3、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.4、B【分析】当点在上运动时,面积逐渐增大,当点到达点时,结合图象可得面积最大为1,得到与的积为12;当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,得到与的和为7,构造关于的一元二方程可求解.【详解】解:当点在上运动时,面积逐渐增大,当点到达点时,面积最大为1.∴,即.当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,∴.则,代入,得,解得或1,因为,即,所以.故选B.【点睛】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.5、B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C、是轴对称图形,但不是中心对称图形,此项不符题意D、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.6、B【分析】先确定抛物线的对称轴,然后根据抛物线的对称性求出点关于对称轴对称的点的坐标,再利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴是直线x=2,∴点关于对称轴对称的点的坐标是,∵当x<2时,y随x的增大而增大,且0<1<1.5,∴.故选:B.【点睛】本题考查了二次函数的性质,属于基本题型,熟练掌握二次函数的性质是解答的关键.7、B【分析】根据题意知,,代入数据,即可求解.【详解】由题意知:一元二次方程x2+2x+k=1有两个不相等的实数根,∴解得∴.∴k的最大整数是1.故选B.【点睛】本题主要考查了利用一元二次方程根的情况求参数范围,正确掌握利用一元二次方程根的情况求参数范围的方法是解题的关键.8、A【分析】过点O作OD⊥AB于点D,根据垂径定理可求出AD的长,再在Rt△AOD中,利用勾股定理求出OD的长即可得到答案.【详解】解:过点O作OD⊥AB于点D,∵AB=8cm,∴AD=AB=4cm,在Rt△AOD中,OD===2(cm),∴油面深度为:5-2=1(cm)故选:A.【点睛】本题考查了垂径定理和勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9、B【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【详解】连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=(180°﹣∠AOB)=55°.故选B.【点睛】本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.10、D【分析】首先根据圆周角的度数求得圆心角的度数,然后代入扇形的面积公式求解即可.【详解】解:∵∠ACB=45°,∴∠AOB=90°,∵半径为10,∴扇形AOB的面积为:=25π,故选:D.【点睛】考查了圆周角定理及扇形的面积公式,解题的关键是牢记扇形的面积公式并正确的运算.二、填空题(每小题3分,共24分)11、或【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE∽△ECF,得出,代入数值得到关于CE的一元二次方程,求解即可.【详解】解:∵正方形ABCD,
∴∠B=∠C,∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠BEA+∠CEF=90°,
∴∠BAE=∠CEF,
∴△ABE∽△ECF,.解得,CE=或.故答案为:或.【点睛】考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大.12、(﹣1,1)【分析】观察图象可知,点B1旋转8次为一个循环,利用这个规律解决问题即可.【详解】解:观察图象可知,点B1旋转8次一个循环,∵2018÷8=252余数为2,∴点B2019的坐标与B3(﹣1,1)相同,∴点B2019的坐标为(﹣1,1).故答案为(﹣1,1).【点睛】本题考查坐标与图形的变化−旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.13、1【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1粒.故答案为1.【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.14、15【分析】先将圆锥的侧面展开图画出来,然后根据弧长公式求出的度数,然后利用等边三角形的性质和特殊角的三角函数在即可求出AD的长度.【详解】圆锥的侧面展开图如下图:∵圆锥的底面直径∴底面周长为设则有解得又∴为等边三角形为PB中点∴蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为故答案为:.【点睛】本题主要考查圆锥的侧面展开图,弧长公式和解直角三角形,掌握弧长公式和特殊角的三角函数值是解题的关键.15、①②③【分析】由是的中位线可得DE∥BC、,即可利用相似三角形的性质进行判断即可.【详解】∵是的中位线∴DE∥BC、∴,故①正确;∵DE∥BC∴∴,故②正确;∵DE∥BC∴∴∴∵是边上的中线∴∴∵∴,故④错误;综上正确的是①②③;故答案是①②③【点睛】本题考查三角形的中位线、相似三角形的性质和判定,解题的关键是利用三角形的中位线得到平行线.16、(1,﹣4).【解析】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).17、1【分析】根据AE:ED=1:2,得到BC=3AE,证明△DEF∽△BCF,得到,求出FC,即可求出CE.【详解】解:∵AE:ED=1:2,∴DE=2AE,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案为:1.【知识点】本题考查平行四边形的性质、相似三角形的判定与性质,理解相似三角形的判定与性质定理是解题关键.18、x≤1【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵二次根式有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题(共66分)19、(1)无人机的高约为19m;(2)无人机的平均速度约为5米/秒或26米/秒【分析】(1)如图,过点作,垂足为点,设,则.解直角三角形即可得到结论;(2)过点作,垂足为点,解直角三角形即可得到结论.【详解】解:(1)如图,过点作,垂足为点.∵,∴.设,则.∵在Rt△ACH中,,∴.∴.解得:∴.答:计算得到的无人机的高约为19m.(2)过点F作,垂足为点.在Rt△AGF中,.FG=CH=18,∴.又.∴或.答:计算得到的无人机的平均速度约为5米/秒或26米/秒.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20、(1)当或时,与相似;(2)【分析】(1)与相似,分两种情况:当时,;当时,.分情况进行讨论即可;(2)通过求出P,Q运动的时间,然后通过作为中间量建立所求的两个三角形之间的关系,从而比值可求.【详解】(1)由题意得,,①当时即解得:.②当时即解得:,(舍去)综上所述,当或时,与相似(2)当时,∵和等高,∴此时运动的时间为1秒则∵和等高∴∴∴.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定和性质是解题的关键.21、(1)证明见解析;(2)AB=1.【分析】(1)根据矩形的性质,即可得到∠D=∠C,AD=BC,∠DAE=∠CBE=45°,进而得出△ADE≌△BCE;(2)依据△ADE是等腰直角三角形,即可得到DE的长,再根据全等三角形的性质以及矩形的性质,即可得到AB的长.【详解】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠BAD=∠ABC=90°,AD=BC,又∵AE、BE分别平分∠DAB、∠ABC,∴∴∠DAE=∠CBE=45°,∴△ADE≌△BCE(ASA);(2)∵∠DAE=45°,∠D=90°,∴∠DAE=∠AED=45°,∴AD=DE=3,又∵△ADE≌△BCE,∴DE=CE=3,∴AB=CD=1.【点睛】本题考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22、,【分析】先去括号,再算乘法约去公约数,即可完成化简,化简,先算三角函数值,再算乘法,再算减法,再将化简后x的值代入原式求解即可.【详解】原式当时原式【点睛】本题考查了整式的混合运算,掌握整式混合运算的法则是解题的关键.23、(1)y=x+1;y=(2)证明见解析;(3)存在,D(8,1).【分析】(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.【详解】解:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1;(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.24、(1)证明见解析;(2)证明见解析;【解析】试题分析:(1)根据BD是AB与BE的比例中项可得,BD是∠ABC的平分线,则∠ABD=∠DBE,可证△ABD∽△DBE,∠A=∠BDE.又因为∠BDC=∠A+∠ABD,即可证明∠CDE=∠ABD=∠ABC,(2)先根据∠CDE=∠CBD,∠C=∠C,可判定△CDE∽△CBD,可得.又△ABD∽△DBE,所以,,所以.试题解析:(1)∵BD是AB与BE的比例中项,∴,又BD是∠ABC的平分线,则∠ABD=∠DBE,∴△ABD∽△DBE,∴∠A=∠BDE.又∠BDC=∠A+∠ABD,∴∠CDE=∠ABD=∠ABC,即证.(2)∵∠CDE=∠CBD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度国际商务信息共享合同3篇
- 2024劳务分包空调安装合同范本
- 2024年家禽养殖协作合同书样例版
- 2024年专业离婚合同书格式指南版
- 2024年度消防排烟系统工程安全评价与风险管理合同
- 二零二四年度区块链应用平台研发与运营合同3篇
- 2024年住宅买卖预定金合同模板
- 2024年地球空间数据采集与处理合同
- 2024市场营销战略合作伙伴合同版B版
- 二零二四年度医疗废物处理系统建设项目合同2篇
- 技术研发工程师招聘面试题及回答建议(某大型央企)
- 工业厂房外架施工协议
- 冲突管理与处理技巧培训考核试卷
- 2023-2024学年广东省深圳市名校联考高一(上)期中地理试卷
- 国开(河北)2024年秋《宣传工作实务》形考任务1-4答案
- 2024年国家公务员考试《申论》真题(副省级)及答案解析
- 英语-2025届江苏省南通市高三11月期中考试卷和答案
- 2024年5S培训:从规划到执行
- 2024年我国医疗改革政策解读
- 客户沟通技巧有效倾听与回应考核试卷
- JGJT46-2024《建筑与市政工程施工现场临时用电安全技术标准》知识培训
评论
0/150
提交评论