2022-2023学年四川省广安邻水县联考数学九年级第一学期期末调研试题含解析_第1页
2022-2023学年四川省广安邻水县联考数学九年级第一学期期末调研试题含解析_第2页
2022-2023学年四川省广安邻水县联考数学九年级第一学期期末调研试题含解析_第3页
2022-2023学年四川省广安邻水县联考数学九年级第一学期期末调研试题含解析_第4页
2022-2023学年四川省广安邻水县联考数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()

A.30 B.27 C.14 D.322.如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=8cmB.sin∠EBC=C.当10≤t≤12时,D.当t=12s时,△PBQ是等腰三角形3.如图,若一次函数的图象经过二、三、四象限,则二次函数的图象可能是A. B.C. D.4.下列四个图形是中心对称图形().A. B. C. D.5.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5 B.(x+2)2=9 C.(x﹣2)2=9 D.(x﹣2)2=216.如图,在中,是边上的点,以为圆心,为半径的与相切于点,平分,,,的长是()A. B.2 C. D.7.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形8.用配方法解方程时,方程可变形为()A. B. C. D.9.设有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只。则从中任意取一只,是二等品的概率等于()A. B. C. D.10.如图,抛物线交x轴的负半轴于点A,点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上.过点Aʹ作x轴的平行线交抛物线于另一点C,则点Aʹ的纵坐标为()A.1.5 B.2 C.2.5 D.311.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是(

)A.2 B.4 C.6 D.812.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是()A.1 B.7 C.1或7 D.无法确定二、填空题(每题4分,共24分)13.从一批节能灯中随机抽取40只进行检查,发现次品2只,则在这批节能灯中随机抽取一只是次品的概率为_______.14.如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.15.写出一个你认为的必然事件_________.16.用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为__________.17.两地的实际距离是,在地图上众得这两地的距离为,则这幅地图的比例尺是___________.18.点向左平移两个单位后恰好位于双曲线上,则__________.三、解答题(共78分)19.(8分)“道路千万条,安全第一条”,《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过”,一辆小汽车在一条城市街道上由西向东行驶,在据路边处有“车速检测仪”,测得该车从北偏西的点行驶到北偏西的点,所用时间为.(1)试求该车从点到点的平均速度(结果保留根号);(2)试说明该车是否超速.20.(8分)已知,如图,在Rt△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF,当点D在线段BC的反向延长线上,且点A,F分别在直线BC的两侧时.(1)求证:△ABD≌△ACF;(2)若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC,求OC的长度.21.(8分)已知关于x的一元二次方程有两个实数根x1,x1.(1)求实数k的取值范围;(1)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.22.(10分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、3、﹣4,这些卡片除数字外都相同.王兴从口袋中随机抽取一张卡片,钟华从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积.(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果.(2)求两人抽到的数字之积为正数的概率.23.(10分)如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于点D,且AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图②,求图①中A,B两点间的距离.24.(10分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)25.(12分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.26.爸爸有一张“山西大剧院”的演出门票,计划通过“掷筹码”的游戏将门票奖励给哥哥或者弟弟,游戏规则如下:准备两个质量均匀的筹码,在第一个筹码的一面画上“×”,另一面画上“○”;在第二个筹码的一面画上“○”,另一面画上“△”.随机掷出两个筹码,当筹码落地后,若朝上的一面都是“○”,则哥哥获得门票;否则,弟弟获得门票.你认为这个游戏公平吗?说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.2、D【分析】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,然后结合三角函数、三角形的面积等逐一进行判断即可得.【详解】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正确,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正确,当10≤t≤12时,点P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=•t•(20﹣t)•=﹣t2+6t,故C正确,如图,当t=12时,Q点与C点重合,点P在BE上,此时BP=20-12=8,过点P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D错误,故选D.【点睛】本题考查动点问题的函数图象,涉及了矩形的性质,勾股定理,三角形函数,等腰三角形的判定等知识,综合性较强,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题.3、C【分析】根据一次函数的性质判断出a、b的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【详解】解:的图象经过二、三、四象限,,,抛物线开口方向向下,抛物线对称轴为直线,对称轴在y轴的左边,纵观各选项,只有C选项符合.故选C.【点睛】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a、b的正负情况是解题的关键.4、C【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、B【分析】两边配上一次项系数一半的平方可得.【详解】∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故选B.【点睛】本题主要考查解一元二次方程的基本技能,熟练掌握解一元二次方程的常用方法和根据不同方程灵活选择方法是解题的关键.6、A【分析】由切线的性质得出求出,证出,得出,得出,由直角三角形的性质得出,得出,再由直角三角形的性质即可得出结果.【详解】解:∵与AC相切于点D,故选A.【点睛】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出是解题的关键.7、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.8、D【详解】解:∵2x2+3=7x,∴2x2-7x=-3,∴x2-x=-,∴x2-x+=-+,∴(x-)2=.故选D.【点睛】本题考查解一元二次方程-配方法,掌握配方法的步骤进行计算是解题关键.9、B【分析】让二等品数除以总产品数即为所求的概率.【详解】解:∵现有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只,从中任意取1只,可能出现12种结果,是二等品的有2种可能,∴二等品的概率.故选:B.【点睛】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.10、B【分析】先求出点A坐标,利用对称可得点横坐标,代入可得纵坐标.【详解】解:令得,即解得点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上点的横坐标为1当时,所以点Aʹ的纵坐标为2.故选:B【点睛】本题考查了二次函数的图像,熟练利用函数解析式求点的坐标是解题的关键.11、D【解析】先根据三角形中位线的性质得到DE=AB,从而得到相似比,再利用位似的性质得到△DEF∽△ABC,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴=,∴△ABC的面积=2×4=8故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.12、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,EF=OF+OE=1,所以AB与CD之间的距离是1或1.故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理及分类讨论的思想的应用.二、填空题(每题4分,共24分)13、【分析】利用概率公式求解可得.【详解】解:在这批节能灯中随机抽取一只是次品的概率为=,故答案为:.【点睛】本题考查概率公式,熟练掌握计算法则是解题关键.14、【分析】根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.【详解】∵四边形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案为.【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.15、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.16、【分析】根据已知列出图表,求出所有结果,即可得出概率.【详解】列表得:红黄绿蓝红(红,红)(红,黄)(红,绿)(红,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)所有等可能的情况数有12种,其中配成紫色的情况数有3种,

∴P配成紫色=故答案为:【点睛】此题主要考查了列表法求概率,根据已知列举出所有可能,进而得出配紫成功概率是解题关键.17、1:1【分析】图上距离和实际距离已知,依据“比例尺=图上距离:实际距离”即可求得地图的比例尺.【详解】解:因为,所以这幅地图的比例尺是.故答案为:1:1.【点睛】本题考查比例尺.比例尺=图上距离:实际距离,在计算比例尺时一定要将实际距离与地图上的距离的单位化统一.18、【分析】首先求出点P平移后的坐标,然后代入双曲线即可得解.【详解】点向左平移两个单位后的坐标为,代入双曲线,得∴故答案为-1.【点睛】此题主要考查坐标的平移以及双曲线的性质,熟练掌握,即可解题.三、解答题(共78分)19、(1);(2)没有超过限速.【分析】(1)分别在、中,利用正切求得、的长,从而求得的长,已知时间路程则可以根据公式求得其速度.(2)将限速与其速度进行比较,若大于限速则超速,否则没有超速.此时注意单位的换算.【详解】解:(1)在中,,在中,,.小汽车从到的速度为.(2),又,小汽车没有超过限速.【点睛】本题考查了解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键..20、(1)证明见解析;(1)【分析】(1)由题意易得AD=AF,∠DAF=90°,则有∠DAB=∠FAC,进而可证AB=AC,然后问题可证;(1)由(1)可得△ABD≌△ACF,则有∠ABD=∠ACF,进而可得∠ACF=135°,然后根据正方形的性质可求解.【详解】(1)证明:∵四边形ADEF为正方形,∴AD=AF,∠DAF=90°,又∵∠BAC=90°,∴∠DAB=∠FAC,∵∠ABC=45°,∠BAC=90°,∴∠ACB=45°,∴∠ABC=∠ACB,∴AB=AC,∴△ABD≌△ACF(SAS);(1)解:由(1)知△ABD≌△ACF,∴∠ABD=∠ACF,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=135°,由(1)知∠ACB=45°,∴∠DCF=90°,∵正方形ADEF边长为,∴DF=4,∴OC=DF=×4=1.【点睛】本题主要考查正方形的性质及等腰直角三角形的性质,熟练掌握正方形的性质及等腰直角三角形的性质是解题的关键.21、(1)(1)不存在【分析】(1)由题意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通过解该不等式即可求得k的取值范围;(1)假设存在实数k使得x1·x1-x11-x11≥0成立.由根与系数的关系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0转化为3x1·x1-(x1+x1)1≥0的形式,通过解不等式可以求得k的值.【详解】(1)∵原方程有两个实数根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1+4k+1﹣4k1﹣8k≥0,∴1﹣4k≥0,∴k≤,∴当k≤时,原方程有两个实数根;(1)假设存在实数k使得x1·x1-x11-x11≥0成立,∵x1,x1是原方程的两根,∴x1+x1=1k+1,x1·x1=k1+1k,由x1·x1-x11-x11≥0,得3x1·x1-(x1+x1)1≥0∴3(k1+1k)﹣(1k+1)1≥0,整理得:﹣(k﹣1)1≥0,∴只有当k=1时,上式才能成立;又∵由(1)知k≤,∴不存在实数k使得x1·x1-x11-x11≥0成立.22、(1)详见解析;(2).【分析】(1)根据题意可以画出树状图,即可列出两人抽到的数字之积所有可能的结果;(2)根据概率公式,结合(1)中的结果即可求得两人抽到的数字之积为正数的概率.【详解】解:(1)如下图所示,;(2)由(1)可知,一共有12种可能性,两人抽到的数字之积为正数的可能性有4种,∴两人抽到的数字之积为正数的概率是:=,即两人抽到的数字之积为正数的概率是.【点睛】本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23、AB=30(mm)【解析】解:如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论