2022-2023学年陕西省西安市高新区三中学数学九上期末综合测试试题含解析_第1页
2022-2023学年陕西省西安市高新区三中学数学九上期末综合测试试题含解析_第2页
2022-2023学年陕西省西安市高新区三中学数学九上期末综合测试试题含解析_第3页
2022-2023学年陕西省西安市高新区三中学数学九上期末综合测试试题含解析_第4页
2022-2023学年陕西省西安市高新区三中学数学九上期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为()A. B. C. D.2.如图,二次函数的最大值为3,一元二次方程有实数根,则的取值范围是A.m≥3 B.m≥-3 C.m≤3 D.m≤-33.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.4.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为()A.相切 B.相交C.相离 D.不能确定5.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>46.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为()A.5sinA B.5cosA C.5sinA7.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A. B. C. D.8.在﹣3、﹣2、﹣1、0、1、2这六个数中,任取两个数,恰好和为﹣1的概率为()A. B. C. D.9.如图,在Rt△ABC中BC=2,以BC的中点O为圆心的⊙O分别与AB,AC相切于D,E两点,的长为()A. B. C.π D.2π10.若一个圆内接正多边形的内角是,则这个多边形是()A.正五边形 B.正六边形 C.正八边形 D.正十边形二、填空题(每小题3分,共24分)11.如图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为__.12.在中,,则的面积是__________.13.如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.14.⊙O的半径为10cm,点P到圆心O的距离为12cm,则点P和⊙O的位置关系是_____.15.在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是______.16.抛物线的顶点坐标为________.17.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为_______.18.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)三、解答题(共66分)19.(10分)(1)计算:;(2)解分式方程:;(3)解不等式组:.20.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是1的倍数的概率(用画树状图或列表等方法求解).21.(6分)新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2m,两棵树苗之间的距离CD为16m,在路灯的照射下,树苗CE的影长CG为1m,树苗DF的影长DH为3m,点G、C、B、D、H在一条直线上.求路灯AB的高度.22.(8分)如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.732)23.(8分)如图,△ABC的角平分线BD=1,∠ABC=120°,∠A、∠C所对的边记为a、c.(1)当c=2时,求a的值;(2)求△ABC的面积(用含a,c的式子表示即可);(3)求证:a,c之和等于a,c之积.24.(8分)有甲乙两个不透明的布袋,甲布袋装有个形状和重量完全相同的小球,分别标有数字和;乙布袋装有个形状和重量完全相同的小球,分别标有数字,和.先从甲布袋中随机取出一个小球,将小球上标有的数字记作;再从乙布袋中随机取出一个小球,再将小球标有的数字记作.(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标,求点在一次函数图象上的概率是多少?25.(10分)计算.26.(10分)某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.(1)求当为多少时每天的利润是1350元?(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、D【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、C【解析】方程ax2+bx+c-m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.【详解】方程ax2+bx+c-m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,又∵图象最高点y=3,∴二次函数最多可以向下平移三个单位,∴m≤3,故选:C.【点睛】本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.3、D【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.4、B【分析】先解方程求得d,根据圆心到直线的距离d与圆的半径r之间的关系即可解题.【详解】解方程:x2–x–6=0,即:,解得,或(不合题意,舍去),

当时,,则直线与圆的位置关系是相交;故选:B【点睛】本题考查了直线与圆的位置关系,只要比较圆心到直线的距离和半径的大小关系.没有交点,则;一个交点,则;两个交点,则.5、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.6、C【解析】根据三角函数即可解答.【详解】解:已知在Rt△ABC中,∠C=90°,BC=5,故BCAB=sinA故AB=5sinA【点睛】本题考查正弦函数,掌握公式是解题关键.7、C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是;故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8、D【分析】画树状图展示所有15种等可能的结果数,找出恰好和为-1的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有15种等可能的结果数,其中恰好和为-1的结果数为3,所以任取两个数,恰好和为-1的概率=.故选:D.【点睛】本题考查的是概率的问题,能够用树状图解决简单概率问题是解题的关键.9、B【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【详解】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选B【点睛】此题考查切线的性质,弧长的计算,解题关键在于作辅助线10、A【分析】根据正多边形的内角求得每个外角的度数,利用多边形外角和为360°即可求解.【详解】解:∵圆内接正多边形的内角是,∴该正多边形每个外角的度数为,∴该正多边形的边数为:,故选:A.【点睛】本题考查圆与正多边形,掌握多边形外角和为360°是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】过点F作FC⊥x轴于点C,设点F的坐标为(a,b),从而得出OC=a,FC=b,根据矩形的性质可得AB=FC=b,BF=AC,结合已知条件可得OA=3a,BF=AC=2a,根据点E、F都在反比例函数图象上可得EA=,从而求出BE,然后根据三角形的面积公式即可求出ab的值,从而求出k的值.【详解】解:过点F作FC⊥x轴于点C,设点F的坐标为(a,b)∴OC=a,FC=b∵∴四边形FCAB是矩形∴AB=FC=b,BF=AC∵∴,即AC∴OC=OA-AC=a解得:OA=3a,BF=AC=2a∴点E的横坐标为3a∵点E、F都在反比例函数的图象上∴∴点E的纵坐标,即EA=∴BE=AB-EA=∵∴即解得:∴故答案为:1.【点睛】此题考查的是反比例函数与图形的面积问题,掌握矩形的判定及性质、反比例函数比例系数与图形的面积关系和三角形的面积公式是解决此题的关键.12、24【分析】如图,由三角函数的定义可得,可得AB=,利用勾股定理可求出AC的长,根据三角形面积公式求出△ABC的面积即可.【详解】∵,∴AB=,∴()2=AC2+BC2,∵BC=8,∴25AC2=9AC2+9×64,解得:AC=6(负值舍去),∴△ABC的面积是×8×6=24,故答案为:24【点睛】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.13、(-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是,设A点坐标为(x,0),由A.

B关于对称轴对称得,解得x=−2,即A点坐标为(−2,0),故答案为(−2,0).14、点P在⊙O外【分析】根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵⊙O的半径r=10cm,点P到圆心O的距离OP=12cm,∴OP>r,∴点P在⊙O外,故答案为点P在⊙O外.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出k为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,∴反比例函数的图象在第二、四象限的概率是:.

故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16、(-1,0)【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.【详解】解:∵抛物线,

∴顶点坐标为:(-1,0),

故答案是:(-1,0).【点睛】本题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点,同学们应熟练掌握.17、【分析】如下图,连接EB.根据垂径定理,设半径为r,在Rt△AOC中,可求得r的长;△AEB∽△AOC,可得到EB的长,在Rt△ECB中,利用勾股定理得EC的长【详解】如下图,连接EB∵OD⊥AB,AB=8,∴AC=4设的半径为r∵CD=2,∴OC=r-2在Rt△ACO中,,即解得:r=5,∴OC=3∵AE是的直径,∴∠EBA=90°∴△OAC∽△EAB∴,∴EB=6在Rt△CEB中,,即解得:CE=故答案为:【点睛】本题考查垂径定理、相似和勾股定理,需要强调,垂径定理中五个条件“知二推三”,本题知道垂直和过圆心这两个条件18、【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,,∴,设,则,,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.三、解答题(共66分)19、(1);(2);(3).【分析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,特殊角的三角函数值,以及二次根式性质计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】解:(1),,,.(2),去分母得:,解得:,经检验是原方程的根.(3),解不等式①得,解不等式②得,∴原不等式组的解集为为:.【点睛】此题考查了解分式方程,以及实数的运算、不等式组的解法,熟练掌握运算法则是解本题的关键.20、(1);(2)见解析,【分析】(1)由标有数字1、2、1的1个转盘中,奇数的有1、1这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是1的倍数的情况数,再根据概率公式即可得出答案.【详解】(1)∵在标有数字1、2、1的1个转盘中,奇数的有1、1这2个,∴指针所指扇形中的数字是奇数的概率为.故答案为:;(2)列表如下:1211(1,1)(2,1)(1,1)2(1,2)(2,2)(1,2)1(1,1)(2,1)(1,1)由表可知,所有等可能的情况数为9种,其中这两个数字之和是1的倍数的有1种,所以这两个数字之和是1的倍数的概率为.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21、10m【分析】设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.【详解】解:设BC的长度为xm由题意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴,即==,即=∴=∴x=4∴AB=10答:路灯AB的高度为10m.【点睛】此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.22、计划修建的这条高速铁路穿越保护区,理由见解析【分析】作PH⊥AC于H,根据等腰三角形的判定定理得到PB=AB=150,根据正弦的定义求出PH,比较大小得到答案.【详解】计划修建的这条高速铁路穿越保护区,理由如下:作PH⊥AC于H,由题意得,∠PBH=60°,∠PAH=30°,∴∠APB=30°,∴∠BAP=∠BPA,∴PB=AB=150,在Rt△PBH中,sin∠PBH=,∴PH=PB•sin∠PBH=75≈129.9,129.9>120,∴计划修建的这条高速铁路穿越保护区.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.23、(1)a=2;(2)或;(3)见解析.【分析】(1)过点作于点,由角平分线定义可得度数,在中,由,可得,由,得点与点重合,从而,由此得解;(2)范围内两种情形:情形1:过点作于点,过点作延长线于点,情形2:过点作于点交AB的延长线于点H,再由三角形的面积公式计算即可;(3)由(2)的结论即可求得结果.【详解】(1)过点作于点,∵平分,∴,在中,,,∵,∴点与点重合,∴,∴;(2)情形1:过点作于点,过点作延长线于点,∵平分,∴.∵在中,,,在中,,,∴;情形2:过点作于点交AB的延长线于点H,则,在中,,于是;(3)证明:由(2)可得=,即=,则a+c=ac【点睛】此题主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论