版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.2.下列四个点,在反比例函数y=图象上的是(
)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)3.二次函数的图象与轴有且只有一个交点,则的值为()A.1或-3 B.5或-3 C.-5或3 D.-1或34.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B. C. D.5.正十边形的外角和为()A.180° B.360° C.720° D.1440°6.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.7.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1 B.1 C.2 D.38.二次函数y=x1+bx﹣t的对称轴为x=1.若关于x的一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,则t的取值范围是()A.﹣4≤t<5 B.﹣4≤t<﹣3 C.t≥﹣4 D.﹣3<t<59.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步10.如图,AB是⊙O的直径,弦CD⊥AB,∠CAB=25°,则∠BOD等于()A.70° B.65° C.50° D.45°二、填空题(每小题3分,共24分)11.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm1.(结果保留π)12.如图,一次函数与的图象交于点,则关于的不等式的解集为______.13.点P(﹣6,3)关于x轴对称的点的坐标为______.14.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=__________.15.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=_____.16.关于的方程的一个根是1,则方程的另一个根是____.17.两同学玩扔纸团游戏,在操场上固定了如下图所示的矩形纸板,E为AD中点,且∠ABD=60°,每次纸团均落在纸板上,则纸团击中阴影区域的概率是________.18.如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是_____.三、解答题(共66分)19.(10分)已知二次函数(、为常数)的图像经过点和点.(1)求、的值;(2)如图1,点在抛物线上,点是轴上的一个动点,过点平行于轴的直线平分,求点的坐标;(3)如图2,在(2)的条件下,点是抛物线上的一动点,以为圆心、为半径的圆与轴相交于、两点,若的面积为,请直接写出点的坐标.20.(6分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.21.(6分)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知(一次拿到7元本).(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.22.(8分)如图,点在以为直径的上,的平分线交于点,过点作的平行线交的延长线于点.(1)求证:是的切线;(2)若,,求的长度.23.(8分)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.x(元/件)15182022…y(件)250220200180…(1)直接写出:y与x之间的函数关系;(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?24.(8分)解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.25.(10分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)若BC=4,AC=8,求CD的长.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.2、D【解析】由可得xy=6,故选D.3、B【分析】由二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,可知△=0,继而求得答案.【详解】解:∵二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值为5或-1.故选:B.【点睛】此题考查了抛物线与x轴的交点问题,注意掌握二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.4、A【解析】根据黄金比的定义得:,得.故选A.5、B【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,
所以正十边形的外角和等于360°,.
故选B.【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.6、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.7、A【解析】因为的图象,在每个象限内,y的值随x值的增大而增大,所以k−1<0,即k<1.故选A.8、A【解析】根据抛物线对称轴公式可先求出b的值,一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解相当于y=x1﹣bx与直线y=t的在﹣1<x<3的范围内有交点,即直线y=t应介于过y=x1﹣bx在﹣1<x<3的范围内的最大值与最小值的直线之间,由此可确定t的取值范围.【详解】解:∵抛物线的对称轴x==1,∴b=﹣4,则方程x1+bx﹣t=0,即x1﹣4x﹣t=0的解相当于y=x1﹣4x与直线y=t的交点的横坐标,∵方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=3时,y=9﹣11=﹣3,又∵y=x1﹣4x=(x﹣1)1﹣4,∴当﹣4≤t<5时,在﹣1<x<3的范围内有解.∴t的取值范围是﹣4≤t<5,故选:A.【点睛】本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程的解相当于与直线y=k的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.9、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.10、C【分析】先根据垂径定理可得,然后根据圆周角定理计算∠BOD的度数.【详解】解:∵弦CD⊥AB,∴,∴∠BOD=2∠CAB=2×25°=50°.故选:C.【点睛】本题考查了垂径定理、圆心角定理和圆周角定理,熟悉掌握定义,灵活应用是解本题的关键二、填空题(每小题3分,共24分)11、15π【分析】圆锥的侧面积=底面周长×母线长÷1.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm1.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.12、【分析】先把代入求出n的值,然后根据图像解答即可.【详解】把代入,得-n-2=-4,∴n=2,∴当x<2时,.故答案为:x<2.【点睛】本题主要考查一次函数图像上点的坐标特征,以及一次函数和一元一次不等式的关系、数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.13、(﹣6,﹣3).【分析】根据“在平面直角坐标系中,关于轴对称的两点的坐标横坐标相同、纵坐标互为相反数”,即可得解.【详解】关于轴对称的点的坐标为故答案为:【点睛】本题比较容易,考查平面直角坐标系中关于x轴对称的两点的坐标之间的关系,是需要识记的内容.14、50°.【详解】解:∵∠A=70°,∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为50°.考点:圆内接四边形的性质.15、-1【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,再求出m+n的值即可.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,
∴-2+4=-m,-2×4=n,
解得:m=-2,n=-8,
∴m+n=-1,
故答案为:-1.【点睛】本题考查了根与系数的关系的应用,能根据根与系数的关系得出-2+4=-m,-2×4=n是解此题的关键.16、【分析】根据一元二次方程根与系数的关系求解即可.【详解】设方程的另一个根为x1,∵方程的一个根是1,∴x1·1=1,即x1=1,故答案为:1.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),掌握知识点是解题关键.17、【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据E为AD中点得出S△ODES△OAD,进而求解即可.【详解】∵ABCD是矩形,∴S△AOD=S△AOB=S△BOC=S△CODS矩形纸板ABCD.又∵E为AD中点,∴S△ODES△OAD,∴S△ODES矩形纸板ABCD,∴纸团击中阴影区域的概率是.故答案为:.【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.18、1【分析】证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,解得,S△ABC=25,∴四边形DBCE的面积=25﹣4=1,故答案为:1.【点睛】考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.三、解答题(共66分)19、(1),;(2);(3)或或【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b,c的二元一次方程组求解即可(2)过点作,过点作.证明△CMD相似于△AME,再根据对应线段成比例求解即可(3)根据题意设点P的纵坐标为y,首先根据三角形面积得出EF与y的关系,再利用勾股定理得出EF与y的关系,从而得出y的值,再代入抛物线解析式求出x的值,得出点坐标.【详解】解:(1)把和代入得:解方程组得出:所以,,(2)由已知条件得出C点坐标为,设.过点作,过点作.两个直角三角形的三个角对应相等,∴∴∴∵解得:∴(3)设点P的纵坐标为y,由题意得出,,∵MP与PE都为圆的半径,∴MP=PE∴整理得出,∴∵∴y=1,∴当y=1时有,,解得,;∴当y=-1时有,,此时,x=0∴综上所述得出P的坐标为:或或【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.20、(1)5a2+3ab;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a与b的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab;(2)当a=3,b=2时,原式=.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键.21、(1)众数是7;(2)①相同;见详解;②【分析】(1)由概率公式求出7元本的个数,由众数的定义即可得出答案;
(2)①由中位数的定义即可得出答案;
②用列表法得出所有结果,嘉嘉两次都拿到7元本的结果有6个,由概率公式即可得出答案.【详解】解:(1)∵(一次拿到7元本),
∴7元本的个数为6×=4(个),按照从小到大的顺序排列为4,5,7,7,7,7,
∴这6个本价格的众数是7.(2)①相同;∵原来4、5、7、7、7、7,∴中位数为,5本价格为4、5、7、7、7,中位数为7,∴,∴相同.②见图第一个第二个4577745777∴(两次都为7).【点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.22、(1)见解析;(2)【分析】(1)连接OD,由为的直径得到∠ACB=90,根据CD平分∠ACB及圆周角定理得到∠AOD=90,再根据DE∥AB推出OD⊥DE,即可得到是的切线;(2)过点C作CH⊥AB于H,CD交AB于M,利用勾股定理求出AB,再利用面积法求出CH,求出OH,根据△CHM∽△DOM求出HM得到AM,再利用平行线证明△CAM∽△CED,即可求出DE.【详解】(1)如图,连接OD,∵为的直径,∴∠ACB=90,∵CD平分∠ACB,∴∠ACD=45,∴∠AOD=90,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴是的切线;(2)过点C作CH⊥AB于H,CD交AB于M,∵∠ACB=90,,,∴AB=,∵S△ABC=,∴CH=,∴AH=,∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90,∠HMC=∠DMO,∴△CHM∽△DOM,∴∴=,,∴HM=,∴AM=AH+HM=,∵AB∥DE,∴△CAM∽△CED,∴,∴DE=.【点睛】此题考查圆的性质,圆周角定理,切线的判定定理,三角形相似,勾股定理,(2)是本题的难点,利用平行线构建相似三角形求出DE的长度,根据此思路相应的添加辅助线进行证明.23、(1)y=﹣10x+1;(2)w=﹣10x2+500x﹣10;(3)销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【分析】(1)根据题意得出日销售量y是销售价x的一次函数,再利用待定系数法求出即可;(2)根据销量×每件利润=总利润,即可得出所获利润W为二次函数;(3)将(2)中的二次函数化为顶点式,确定最值即可.【详解】(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则,解得:.故y与x之间的函数关系式为:y=﹣10x+1.故答案为:y=﹣10x+1.(2)w与x的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+1)=﹣10x2+500x﹣10;(3)w=﹣10x2+500x﹣10=﹣10(x﹣25)2+2250,因为﹣10<0,所以当x=25时,w有最大值.w最大值为2250,答:销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【点睛】本题考查了二次函数的应用及二次函数最大值求法,难度适中,解答本题的关键是根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.24、(1),;(1)y1=﹣1,y1=.【分析】(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考语文一轮复习:文学类文本阅读之环境(原卷版+解析)
- 二零二四年度体育运动赛事赞助合同
- 泌阳租房合同范例
- 巴南区电子运输合同范例
- 红高粱收购合同范例
- 竹林砍伐工程合同模板
- 租赁个人车位合同范例
- 二零二四年度软件开发与技术服务外包合同
- 瓶子喷涂加工合同范例
- 二零二四年度碧桂园建筑材料采购合同
- 企业人才库建设课件
- 我是一只有个性的狼教学设计及课后反思
- 积极心理暗示课件
- 2022年浙江公务员考试申论真题及答案(A卷)
- 绽放校园文明之花创建文明校园文明礼仪主题班会课件
- 二年级下册音乐教案- 欣赏《调皮的小闹钟》 人教版
- 关于增加体检科的可行性报告
- 油藏工程课程设计
- 公路定向钻穿越应急预案
- 幼儿园安全管理网络图
- 年度考核结果证明
评论
0/150
提交评论