版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知是单位向量,且,那么下列说法错误的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣2.下列事件不属于随机事件的是()A.打开电视正在播放新闻联播 B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上 D.若今天星期一,则明天是星期二3.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4- B.4- C.8- D.8-4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.B.C.D.5.设是方程的两个实数根,则的值为()A.2017 B.2018 C.2019 D.20206.如图所示,已知圆心角,则圆周角的度数是()A. B. C. D.7.若,则的值是()A. B. C. D.08.估计+1的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间9.若,则的值为()A.1 B. C. D.10.如图,在4×4的正方形方格中,和的顶点都在边长为1的小正方形的格点上,则的值为()A. B. C. D.311.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B. C.π﹣4 D.12.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次二、填空题(每题4分,共24分)13.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.14.等边三角形ABC绕着它的中心,至少旋转______度才能与它本身重合15.在平面直角坐标系xOy中,点O的坐标为O,□OABC的顶点A在反比例函数的图象上,顶点B在反比例函数的图象上,点C在x轴正半轴上,则□OABC的面积是________16.如图,抛物线解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是_____.17.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.18.已知,一个小球由地面沿着坡度的坡面向上前进10cm,则此时小球距离地面的高度为______cm.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,抛物线().(1)写出抛物线顶点的纵坐标(用含a的代数式表示);(2)若该抛物线与x轴的两个交点分别为点A和点B,且点A在点B的左侧,AB=1.①求a的值;②记二次函数图象在点
A,B之间的部分为W(含
点A和点B),若直线
()经过(1,-1),且与
图形W
有公共点,结合函数图象,求
b
的取值范围.20.(8分)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.21.(8分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)将以原点为旋转中心旋转得到,画出旋转后的.(2)平移,使点的对应点坐标为,画出平移后的(3)若将绕某一点旋转可得到,请直接写出旋转中心的坐标.22.(10分)有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.23.(10分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.(1)请判断的形状,并说明理由;(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;(3)当,求PA+PB+PC的最小值.24.(10分)如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.25.(12分)如图,AB是的直径,点C,D在上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.(1)求证:EF与相切:(2)若AB=3,BD=,求CE的长.26.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)请补全条形统计图(图2);(2)在扇形统计图中,“篮球”部分所对应的圆心角是____________度?(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
参考答案一、选择题(每题4分,共48分)1、C【详解】解:∵是单位向量,且,,∴,,,,故C选项错误,故选C.2、D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A.打开电视正在播放新闻联播,是随机事件,不符合题意;B.某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C.抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D.若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D.【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、B【解析】试题解析:连接AD,
∵BC是切线,点D是切点,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF=,
S△ABC=AD•BC=×2×4=4,
∴S阴影部分=S△ABC-S扇形AEF=4-π.4、C【解析】根据圆内接四边形的性质求出∠A的度数,再根据圆周角定理求解即可.【详解】∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选C.【点睛】本题考查了圆内接四边形的性质,圆周角定理,熟练掌握圆内接四边形的对角互补是解题的关键.5、D【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a是方程的实数根,可得,据此求出,利用根与系数关系得:=-3,变形为()-(),代入即可得到答案.【详解】解:∵a、b是方程的两个实数根,
∴=-3;
又∵,
∴,∴
=()-()=2017-(-3)
=1
即的值为1.
故选:D.【点睛】本题考查了根与系数的关系与一元二次方程的解,把化成()-()是解题的关键.6、A【详解】是同弧所对的圆周角和圆心角,,因为圆心角∠BOC=100°,所以圆周角∠BAC=50°【点睛】本题考查圆周角和圆心角,解本题的关键是掌握同弧所对的圆周角和圆心角关系,然后根据题意来解答7、D【分析】设,则a=2k,b=3k,代入式子化简即可.【详解】解:设,∴a=2k,b=3k,∴==0,故选D.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.8、B【解析】分析:直接利用2<<3,进而得出答案.详解:∵2<<3,∴3<+1<4,故选B.点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.9、D【解析】∵,∴==,故选D10、B【分析】根据勾股定理求出和的各边长,由三边对应成比例的两个三角形相似可得,所以可得,求值即可.【详解】解:由勾股定理,得,,,,,,,,,,.故选:B【点睛】本题考查了相似三角形的判定与性质及解直角三角形,灵活利用正方形方格的特点是解题的关键.11、A【分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC-S△OBC即可求得.【详解】∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:,∴∴S阴影=S扇形OBC-S△OBC=,故选:A.【点睛】本题考查了扇形的面积公式:(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.12、D【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.二、填空题(每题4分,共24分)13、【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.14、120【分析】根据等边三角形的性质,结合图形可以知道旋转角度应该等于120°.【详解】解:等边△ABC绕着它的中心,至少旋转120度能与其本身重合.【点睛】本题考查旋转对称图形及等边三角形的性质.15、3【分析】根据平行四边形的性质和反比例函数系数k的几何意义即可求得.【详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,
∵四边形OABC是平行四边形,
∴AB∥OC,OA=BC,
∴BE⊥y轴,
∴OE=BD,
∴Rt△AOE≌Rt△CBD(HL),
根据系数k的几何意义,S矩形BDOE=5,S△AOE=1,
∴四边形OABC的面积=5-1-1=3,
故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性16、(0,n2+n)【分析】根据待定系数法分别求得直线OA1、A2B1、A2B2……的解析式,即可求得P1、P2、P3…的坐标,得出规律,从而求得点Pn的坐标.【详解】解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴Pn(0,n2+n),故答案为(0,n2+n).【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据一次函数图象上点的坐标特征得出规律是解题的关键.17、【分析】作EC⊥x轴于C,EP⊥y轴于P,FD⊥x轴于D,FH⊥y轴于H,由题意可得点A,B的坐标分别为(4,0),B(0,),利用待定系数法求出直线AB的解析式,再联立反比例函数解析式求出点,F的坐标.由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【详解】解:如图,作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,
由题意可得点A,B的坐标分别为(4,0),B(0,),由点B的坐标为(0,),设直线AB的解析式为y=kx+,将点A的坐标代入得,0=4k+,解得k=-.∴直线AB的解析式为y=-x+.联立一次函数与反比例函数解析式得,,解得或,即点E的坐标为(1,2),点F的坐标为(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,
∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案为:.【点睛】本题为一次函数与反比例函数的综合题,考查了反比例函数k的几何意义、一次函数解析式的求法,两函数交点问题,掌握反比例函数图象上点的坐标特征、反比例函数的比例系数k的几何意义,利用转化法求面积是解决问题的关键.18、.【分析】利用勾股定理及坡度的定义即可得到所求的线段长.【详解】如图,由题意得,,设由勾股定理得,,即,解得则故答案为:.【点睛】本题考查了勾股定理及坡度的定义,掌握理解坡度的定义是解题关键.三、解答题(共78分)19、(1)1a+8;(2)①a=-1;②或或【分析】(1)将原表达式变为顶点式,即可得到答案;(2)①根据顶点式可得抛物线的对称轴是x=1,再根据已知条件得到A、B两点的坐标,将坐标代入,即可得到a的值;②分情况讨论,当
()经过(1,-1)和A(-1,0)时,以及当
()经过(1,-1)和B(3,0)时,代入解析式即可求出答案.【详解】(1)==所以顶点坐标为(1,1a+8),则纵坐标为1a+8.(2)①解:∵原解析式变形为:y=∴抛物线的对称轴是x=1又∵抛物线与x轴的两个交点分别为点A和点B,AB=1∴点A和点B各距离对称轴2个单位∵点A在点B的左侧∴A(-1,0),B(3,0)∴将B(3,0)代入∴9a-6a+5a+8=0a=-1②当
()经过(1,-1)和A(-1,0)时,当
()经过(1,-1)和B(3,0)时,∴或或【点睛】本题考查了二次函数、一次函数的综合性题目,数形结合是解答此题的关键.20、(1);(2)①菱形,理由见解析;②AM=,MN=;(3)1.【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得=,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∵AN=AC∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠MNA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴∴=,∴=,解得x=,∴AM=∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴△CPM∽△HPN∴=,∴=,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.21、(1)见解析;(2)见解析;(3)旋转中心坐标为.【分析】(1)依据旋转的性质确定出A1,B1,C1,然后用线段吮吸连接即可得到△A1B1C1;(2)依据点A的对应点A2坐标为(3,-3),确定出平移的方式,然后根据平移的性质即可画出平移后的△A2B2C2;(3)连接对应点的连线可发现旋转中心.【详解】解:(1)如图所示:即为所求;(2)如图所示:即为所示;(3)如图,旋转中心坐标为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.本题也考查了平移作图.22、(1);(2).【分析】(1)根据题意画出树状图,根据树状图作答即可;(2)根据树状图作答即可.【详解】解:(1)画树状图得:∵共有12种等可能的结果,取出的3个小球上恰好有2个元音字母的为4种情况,∴P(恰好有2个元音字母);(2)∵取出的3个小球上全是辅音字母的有2种情况,∴取出的3个小球上全是辅音字母的概率是:.【点睛】本题考查了概率统计的问题,掌握树状图的性质以及画法是解题的关键.23、(1)等边三角形,见解析;(2)见解析;(3)【解析】(1)根据旋转的性质可以得出,即可证明出是等边三角形;(2)绕点A顺时针旋转得到,根据的旋转的性质得到,,相加即可得;(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小,由,,可得CN垂直平分AB,再利用直角三角形的边角关系,从而求出PA+PB+PC的最小值.【详解】(1)等边三角形;绕A点顺时针旋转得到MA,,是等边三角形.(2)绕点A顺时针旋转得到,,由(1)可知,.(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小.连接BN,由旋转的性质可得:AB=AN,∠BAM=60°∴是等边三角形;,,是AB的垂直平分线,垂足为点Q,,,,即的最小值为.【点睛】本题为旋转综合题,掌握旋转的性质、等边三角形的判定及性质及理解小华的思路是关键.24、(1)见解析;(2)见解析;(3).【解析】(1)要想证明△ABH是等腰三角形,只需要根据平行四边形的性质可得∠B=∠ADC,再根据圆内接四边形的对角互补,可得∠ADC+∠AHC=180°,再根据邻补角互补,可知∠AHC+∠AHB=180°,从而可以得到∠ABH和∠AHB的关系,从而可以证明结论成立;(2)要证直线PC是⊙O的切线,只需要连接OC,证明∠OCP=90°即可,根据平行四边形的性质和边AB与⊙O相切于点A,可以得到∠AEC的度数,又∠PCD=2∠DAF,∠DOF=2∠DAF,∠COE=∠DOF,通过转化可以得到∠OCP的度数,从而可以证明结论;(3)根据题意和(1)(2)可以得到∠AED=90°,由平行四边形的性质和勾股定理,由AB=2,AD=,可以求得半径的长.【详解】(1)证明:∵四边形ADCH是圆内接四边形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四边形ABCD是平行四边形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)证明:连接OC,如右图所示,∵边AB与⊙O相切于点A,∴BA⊥AF,∵四边形ABCD是平行四边形,∴AB∥CD,∴CD⊥AF,又∵FA经过圆心O,∴,∠OEC=90°,∴∠COF=2∠DAF,又∵∠PCD=2∠DAF,∴∠COF=∠P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程技术员兼职聘用协议
- (2024版)国际物流仓储服务长期租赁合同
- 2024关于用户服务合同范文
- 2024公司土地转让合同样本
- 2024定期性赠与契约合同
- 2024年国际文化旅游产业融合发展合同
- 2024广告制作合同注意事项
- 2024年工程进度保证协议
- 2024年工业厂房装修施工合同
- 2024年城市公共交通乘车合同
- 八年级物理第一二章测试题(含答案)
- 两山之路智慧树知到课后章节答案2023年下丽水学院
- 【高中语文】《逻辑的力量》课件+统编版++选择性必修上册
- 项目物资管理员培训交底总结
- 青光眼PPT课件完整版
- 快速消费品制造行业概述
- 法院诉讼指定监护人申请书
- 类风湿性关节炎综述4572
- 机关事业单位公文写作培训-课件
- 住院医师规范化培训临床小讲课指南(2021年版)
- 《旅游管理信息系统》课程教学
评论
0/150
提交评论