




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题6.1概率(必修)(精讲精析篇)一、核心素养1.结合随机事件发生的不确定性和频率的稳定性实验,考查对概率意义及基本性质的理解,凸显数据分析的核心素养.2.结合概率的意义及事件的概念,考查事件的关系及运算,凸显数学运算、逻辑推理的核心素养.3.理解古典概型及其概率计算公式,培养数学运算的核心素养.4.结合古典概型的概率公式及基本事件的概念,考查古典概型的概率计算公式,凸显数据分析、数学运算的核心素养.二、考试要求1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.了解事件的独立性.三、主干知识梳理1.事件的分类确定事件必然事件在条件S下,一定会发生的事件叫相对于条件S的必然事件不可能事件在条件S下,一定不会发生的事件叫相对于条件S的不可能事件随机事件在条件S下,可能发生也可能不发生的事件叫做相对于条件S的随机事件2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=eq\f(nA,n)为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A发生的概率,简称为A的概率.3.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅,P(A∪B)=P(A)+P(B)=14.事件与集合间的对应关系事件集合必然事件全集不可能事件空集(∅)事件B包含于事件A(B⊆A)集合B包含于集合A(B⊆A)事件B与事件A相等(B=A)集合B与集合A相等(B=A)事件B与事件A的并事件(B∪A)集合B与集合A的并集(B∪A)事件B与事件A的交事件(B∩A)集合B与集合A的交集(B∩A)事件B与事件A互斥(B∩A=∅)集合B与集合A的交集为空集(B∩A=∅)事件A的对立事件集合A的补集(∁UA)5.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率为eq\a\vs4\al(1).(3)不可能事件的概率为eq\a\vs4\al(0).(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=eq\a\vs4\al(1),P(A)=1-P(B).(6)对于事件A与事件B,有P(A∪B)=P(A)+P(B)--P(A∩B)6.基本事件的特点(1)任何两个基本事件都是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.7.古典概型(1)古典概型的特点①有限性:试验中所有可能出现的基本事件只有有限个;②等可能性:每个基本事件出现的可能性相等.(2)古典概型的概率公式P(A)=eq\f(A包含的基本事件的个数,基本事件的总数).8.事件的独立性(1)对于事件、,若的发生与的发生互不影响,则称、是相互独立事件.(2)若与相互独立,则与,与,与也都相互独立.(3)若,则与相互独立.二、真题展示1.(2023·江苏高考真题)逻辑表达式等于()A. B. C. D.2.(2023·全国高考真题(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3 B.0.5 C.0.6 D.0.8考点01随机事件间的关系
【典例1】(2023·全国高一课时练习)在200件产品中,192有件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品.其中的随机事件有()A.①③ B.③④ C.②④ D.①②【典例2】(2023·全国高一课时练习)把红、黄、蓝3张卡片随机分给甲、乙、丙三人,每人1张,事件:“甲得红卡”与事件:“乙得红卡”是()A.不可能事件 B.必然事件C.对立事件 D.互斥且不对立事件【典例3】(2023·全国)有下列说法:(1)某人连续12次投掷一枚骰子,结果都是出现6点,他认为这枚骰子的质地是均匀的.(2)某地气象局预报,明天本地下雨概率为70%,由此认为明天本地有70%的区域下雨,30%的区域不下雨.(3)抛掷一枚质地均匀的硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,都出现反面的概率是.(4)围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,认为一定有一次会摸到黑子.其中正确的个数为()A.0 B.2 C.3 D.1【总结提升】1.判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还是一定不发生(不可能事件).2.列举试验的所有可能结果的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验的条件;(2)根据日常生活经验,按照一定的顺序列举所有可能的结果.可应用画树形图、列表等方法,这样才能不重不漏地列举出所有可能结果.3.判断互斥事件、对立事件的2种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件(2)集合法:=1\*GB3①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.=2\*GB3②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集考点02随机事件的频率与概率【典例4】(2023·全国)下列说法正确的是()A.任何事件的概率总是在,之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定【典例5】(2023·全国高一课时练习)下列说法正确的是________.(填序号)①频率反映事件出现的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生了m次,则事件A发生的概率P(A)=;③含百分比的数是频率,但不是概率;④频率是不能脱离n次随机试验的试验值,而概率是脱离随机试验的客观值;⑤频率是概率的近似值,概率是频率的稳定值.【总结提升】1.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,随机事件的发生呈现一定的规律性,因而,可以从统计的角度,通过计算事件发生的频率去估算概率.2.随机事件的频率与概率的常见题型及解题策略(1)补全或列出频率分布表.可直接依据已知条件,逐一计数,写出频率.(2)由频率估计概率.可以根据频率与概率的关系,由频率直接估计概率.(3)由频率估计某部分的数值.可由频率估计概率,再由概率估算某部分的数值.考点03互斥事件与对立事件的概率【典例6】(2023年全国卷Ⅲ文)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7【典例7】【多选题】(2023·山东莱西·高一期末)甲、乙两名射击运动员进行射击比赛,若甲的中靶概率为0.8,乙的中靶概率为0.9,则下列结论正确的为()A.两人都中靶的概率为0.72B.恰好有一人中靶的概率为0.18C.两人都脱靶的概率为0.14D.恰好有一人脱靶的概率为0.26【典例8】(2023·天津一中高一期末)掷一枚骰子的试验中,出现各点的概率均为,事件表示“出现小于5的偶数点”,事件表示“出现小于5的点数”,则一次试验中,事件(表示事件的对立事件)发生的概率为______.【典例9】(2023·全国高一课时练习)某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为,求:(1);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.【总结提升】求复杂的互斥事件的概率的方法(1)直接法(2)间接法(正难则反)考点04古典概型
【典例10】(2023·山东高考真题)甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同窗恰好选取同一处景点的概率是()A. B. C. D.【典例11】(2023年高考全国Ⅱ卷文)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B.C. D.【规律方法】(1)一个试验是否为古典概型,在于是否具有两个特征:有限性和等可能性.(2)并不是所有的试验都是古典概型,下列三类试验都不是古典概型;①基本事件个数有限,但非等可能.②基本事件个数无限,但等可能.③基本事件个数无限,也不等可能.【易错提醒】确定基本事件空间可以采用“树图法”、“列表法”,要注意确定的基本事件不重不漏.考点05古典概型与统计相结合【典例12】(2023·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【典例13】(2023年文北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【典例14】(2023·北京文,17)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【典例15】(2023·天津高考真题(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.【典例16】(2023·湖北荆门外语学校)2020年1月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最好的方式.全国大、中、小学生都开始了网上学习.为了了解某校学生网上学习的情况,从该校随机抽取了40位同学,记录了他们每周的学习时间,其频率分布直方图如下:(1)求的值并估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表).(2)在该样本中每周学习时间不少于50小时的同学中随机的抽取两人,其中这两人来自不同的组的概率是多少?1.(2023·全国)下列叙述随机事件的频率与概率的关系中哪个是正确的()A.随着试验次数的增加,频率一般会越来越接近概率B.频率是客观存在的,与试验次数无关C.概率是随机的,在试验前不能确定D.频率就是概率2.(2023·山东高考真题)现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A. B. C. D.3.(2023·福建高一期末)已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.94.(2023·全国高一课时练习)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称“甲、乙心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A. B. C. D.5.(2023·山东高三其他)宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.6.(2023·贵州高二学业考试)若A,B为对立事件,则下列式子中成立的是()A. B. C. D.7.(2023·眉山市东坡区永寿高级中学高二期中(文))从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”8.(2023·山东高二期末)《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.9.(2023·河北高二月考)某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:第一次第二次第三次第四次第五次甲的成绩(分)乙的成绩(分)(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.10.(2023·辽源市田家炳高级中学校高二期中(理))生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲,乙机床生产的产品中各任取1件,求:(1)至少有1件废品的概率;(2)恰有1件废品的概率.专题6.1概率(必修)(精讲精析篇)一、核心素养1.结合随机事件发生的不确定性和频率的稳定性实验,考查对概率意义及基本性质的理解,凸显数据分析的核心素养.2.结合概率的意义及事件的概念,考查事件的关系及运算,凸显数学运算、逻辑推理的核心素养.3.理解古典概型及其概率计算公式,培养数学运算的核心素养.4.结合古典概型的概率公式及基本事件的概念,考查古典概型的概率计算公式,凸显数据分析、数学运算的核心素养.二、考试要求1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.了解事件的独立性.三、主干知识梳理1.事件的分类确定事件必然事件在条件S下,一定会发生的事件叫相对于条件S的必然事件不可能事件在条件S下,一定不会发生的事件叫相对于条件S的不可能事件随机事件在条件S下,可能发生也可能不发生的事件叫做相对于条件S的随机事件2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=eq\f(nA,n)为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A发生的概率,简称为A的概率.3.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅,P(A∪B)=P(A)+P(B)=14.事件与集合间的对应关系事件集合必然事件全集不可能事件空集(∅)事件B包含于事件A(B⊆A)集合B包含于集合A(B⊆A)事件B与事件A相等(B=A)集合B与集合A相等(B=A)事件B与事件A的并事件(B∪A)集合B与集合A的并集(B∪A)事件B与事件A的交事件(B∩A)集合B与集合A的交集(B∩A)事件B与事件A互斥(B∩A=∅)集合B与集合A的交集为空集(B∩A=∅)事件A的对立事件集合A的补集(∁UA)5.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率为eq\a\vs4\al(1).(3)不可能事件的概率为eq\a\vs4\al(0).(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=eq\a\vs4\al(1),P(A)=1-P(B).(6)对于事件A与事件B,有P(A∪B)=P(A)+P(B)--P(A∩B)6.基本事件的特点(1)任何两个基本事件都是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.7.古典概型(1)古典概型的特点①有限性:试验中所有可能出现的基本事件只有有限个;②等可能性:每个基本事件出现的可能性相等.(2)古典概型的概率公式P(A)=eq\f(A包含的基本事件的个数,基本事件的总数).8.事件的独立性(1)对于事件、,若的发生与的发生互不影响,则称、是相互独立事件.(2)若与相互独立,则与,与,与也都相互独立.(3)若,则与相互独立.二、真题展示1.(2023·江苏高考真题)逻辑表达式等于()A. B. C. D.答案:D分析:从集合角度去理解逻辑表达式【详解】如图,类似于,则类似于故选:D.2.(2023·全国高考真题(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3 B.0.5 C.0.6 D.0.8答案:C分析:利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:,共10种排法,其中2个0不相邻的排列方法为:,共6种方法,故2个0不相邻的概率为,故选:C.考点01随机事件间的关系
【典例1】(2023·全国高一课时练习)在200件产品中,192有件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品.其中的随机事件有()A.①③ B.③④ C.②④ D.①②答案:A分析:按照随机事件、必然事件、不可能事件的定义一一判断.【详解】由于在200件产品中,192有件一级品,8件二级品,则①“在这200件产品中任意选出9件,全部是一级品”,这件事可能发生,也可能不发生,故是随机事件.②“在这200件产品中任意选出9件,全部是二级品”,这件事根本不可能发生,故是不可能事件.③“在这200件产品中任意选出9件,不全是一级品”,这件事可能发生,也可能不发生,故是随机事件.④“在这200件产品中任意选出9件,其中不是一级品的件数小于100”,是一定要发生的事件,故是必然事件故选:A.【典例2】(2023·全国高一课时练习)把红、黄、蓝3张卡片随机分给甲、乙、丙三人,每人1张,事件:“甲得红卡”与事件:“乙得红卡”是()A.不可能事件 B.必然事件C.对立事件 D.互斥且不对立事件答案:D分析:利用互斥事件和对立事件的定义判断即可【详解】黑、红、白3张卡片分给甲、乙、丙三人,每人一张,事件“甲分得红卡”与“乙分得红卡”不可能同时发生,但事件“甲分得红卡”不发生时,事件“乙分得红卡”有可能发生,有可能不发生,事件“甲分得红牌卡”与“乙分得红卡”是互斥但不对立事件.故选:D.【典例3】(2023·全国)有下列说法:(1)某人连续12次投掷一枚骰子,结果都是出现6点,他认为这枚骰子的质地是均匀的.(2)某地气象局预报,明天本地下雨概率为70%,由此认为明天本地有70%的区域下雨,30%的区域不下雨.(3)抛掷一枚质地均匀的硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,都出现反面的概率是.(4)围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,认为一定有一次会摸到黑子.其中正确的个数为()A.0 B.2 C.3 D.1答案:D分析:某人连续12次投掷一枚骰子,结果都是一样,这枚骰子的质地可能是不均匀的;天气预报中下雨的概率是指要下雨的把握有多大;根据事件的随机性,围棋盒里棋子有放回抽样,不一定有一次会摸到黑子.【详解】由题意得:某人连续12次投掷一枚骰子,结果都是出现6点,这枚骰子的质地可能是不均匀的,故(1)不正确;某地气象局预报,明天本地下雨概率为,是指要下雨的把握有多大,故(2)不正确;抛掷一枚质地均匀的硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,都出现反面的概率是.根据相互独立事件同时发生的概率知(3)正确;围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,不一定有一次会摸到黑子.(4)不正确.综上可知,有1个说法是正确的,故选:D.【总结提升】1.判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还是一定不发生(不可能事件).2.列举试验的所有可能结果的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验的条件;(2)根据日常生活经验,按照一定的顺序列举所有可能的结果.可应用画树形图、列表等方法,这样才能不重不漏地列举出所有可能结果.3.判断互斥事件、对立事件的2种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件(2)集合法:=1\*GB3①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.=2\*GB3②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集考点02随机事件的频率与概率【典例4】(2023·全国)下列说法正确的是()A.任何事件的概率总是在,之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定答案:C分析:由概率和频率的有关概念求出结果.【详解】:任何事件的概率总是在,之间,故错误;:频率是客观存在的,与试验次数有关,试验次数越多,频率越稳定,故错误;:由频率的性质知:随着试验次数的增加,事件发生的频率一般会稳定于概率,故正确;:概率是客观的,在试验前能确定,故错误.故选:C.【典例5】(2023·全国高一课时练习)下列说法正确的是________.(填序号)①频率反映事件出现的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生了m次,则事件A发生的概率P(A)=;③含百分比的数是频率,但不是概率;④频率是不能脱离n次随机试验的试验值,而概率是脱离随机试验的客观值;⑤频率是概率的近似值,概率是频率的稳定值.答案:①④⑤.分析:①根据频率和概率的定义可以判断.②根据实验时频率和概率的关系判断.③利用频率和概率的关系判断.④根据频率和概率的关系判断⑤由频率和概率的关系判断.【详解】解:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小所以①正确;②频率是概率的近似值,概率是频率的稳定值,所以他们并不是一个值,所以②错误;③理论上的百分率是概率,所以③错误;④频率是不能脱离次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值,所以④正确;⑤频率的数值是通过实验完成的,是概率的近似值,概率是频率的稳定值.所以⑤正确.所以正确的说法是①④⑤.故答案为:①④⑤.【总结提升】1.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,随机事件的发生呈现一定的规律性,因而,可以从统计的角度,通过计算事件发生的频率去估算概率.2.随机事件的频率与概率的常见题型及解题策略(1)补全或列出频率分布表.可直接依据已知条件,逐一计数,写出频率.(2)由频率估计概率.可以根据频率与概率的关系,由频率直接估计概率.(3)由频率估计某部分的数值.可由频率估计概率,再由概率估算某部分的数值.考点03互斥事件与对立事件的概率【典例6】(2023年全国卷Ⅲ文)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7答案:B【解析】设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.【典例7】【多选题】(2023·山东莱西·高一期末)甲、乙两名射击运动员进行射击比赛,若甲的中靶概率为0.8,乙的中靶概率为0.9,则下列结论正确的为()A.两人都中靶的概率为0.72B.恰好有一人中靶的概率为0.18C.两人都脱靶的概率为0.14D.恰好有一人脱靶的概率为0.26答案:AD分析:由积事件的概率判断A,由和事件及互斥事件的概率判断B;由对立事件的概率判断C,由互斥事件的和判断D.【详解】记“甲中靶”,“乙中靶”,“甲不中靶”,“乙不中靶”,则两两独立.因为,,所以,.对于选项A:“两人都中靶”,,故A正确;对于选项B:“恰好有一人中靶”,,故B不正确;对于选项C:“两人不都中靶”与“两人都中靶”是对立事件,由选项A可知,“两人不都中靶”的概率是,故C错误;对于选项D:“恰好有一人脱靶”,由B知,概率为0.26,故D正确.故选:AD【典例8】(2023·天津一中高一期末)掷一枚骰子的试验中,出现各点的概率均为,事件表示“出现小于5的偶数点”,事件表示“出现小于5的点数”,则一次试验中,事件(表示事件的对立事件)发生的概率为______.答案:【解析】依题意可知,事件与事件为互斥事件,且,,所以.故答案为:.【典例9】(2023·全国高一课时练习)某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为,求:(1);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.答案:(1);(2);(3).【解析】(1)∵每1000张奖券中设特等奖1个,一等奖10个,二等奖50个,∴.(2)设“抽取1张奖券中奖”为事件D,则P(D)=P(A)+P(B)+P(C)=.(3)设“抽取1张奖券不中特等奖和一等奖”为事件E,则P(E)=1-P(A)-P(B)=1-.点睛:求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.二是间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反),特别是“至多”,“至少”型题目,用间接求法就显得较简便.【总结提升】求复杂的互斥事件的概率的方法(1)直接法(2)间接法(正难则反)考点04古典概型
【典例10】(2023·山东高考真题)甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同窗恰好选取同一处景点的概率是()A. B. C. D.答案:D分析:应用古典概型的概率求法,求甲、乙两位同窗恰好选取同一处景点的概率即可.【详解】甲、乙两位同窗选取景点的种数为,其中甲、乙两位同窗恰好选取同一处景点的种数为2,∴甲、乙两位同窗恰好选取同一处景点的概率为.故选:D【典例11】(2023年高考全国Ⅱ卷文)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B.C. D.答案:B【解析】设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,,共10种.其中恰有2只做过测试的取法有,共6种,所以恰有2只做过测试的概率为,故选B.【规律方法】(1)一个试验是否为古典概型,在于是否具有两个特征:有限性和等可能性.(2)并不是所有的试验都是古典概型,下列三类试验都不是古典概型;①基本事件个数有限,但非等可能.②基本事件个数无限,但等可能.③基本事件个数无限,也不等可能.【易错提醒】确定基本事件空间可以采用“树图法”、“列表法”,要注意确定的基本事件不重不漏.考点05古典概型与统计相结合【典例12】(2023·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.答案:(1)分别抽取3人,2人,2人.(2)①{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.②P(M)=.【解析】(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.②不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以事件M发生的概率P(M)=eq\f(5,21).【典例13】(2023年文北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)答案:(Ⅰ)(Ⅱ)(Ⅲ)增加第五类电影的好评率,
减少第二类电影的好评率.【解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为.(Ⅱ)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得.(Ⅲ)增加第五类电影的好评率,减少第二类电影的好评率.【典例14】(2023·北京文,17)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.答案:【解析】分析:(1)根据频率分布直方图求出样本中分数小于70的频率,然后利用频率估计概率;(2)计算出样本中分数在[40,50)内的人数,然后按比例求出总体中分数在此范围内的人数;(3)先求出样本中男女生人数,然后利用样本比例估计总体比例.详解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为400×eq\f(5,100)=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×eq\f(1,2)=30,所以样本中的男生人数为30×2=60,女生人数为100-60=40,所以样本中男生和女生人数的比例为60:40=3:2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3:2.【典例15】(2023·天津高考真题(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.答案:(I)6人,9人,10人;(II)(i)见解析;(ii).【解析】(I)由已知,老、中、青员工人数之比为,由于采取分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(II)(i)从已知的6人中随机抽取2人的所有可能结果为,,,,共15种;(ii)由表格知,符合题意的所有可能结果为,,,,共11种,所以,事件M发生的概率.【典例16】(2023·湖北荆门外语学校)2020年1月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最好的方式.全国大、中、小学生都开始了网上学习.为了了解某校学生网上学习的情况,从该校随机抽取了40位同学,记录了他们每周的学习时间,其频率分布直方图如下:(1)求的值并估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表).(2)在该样本中每周学习时间不少于50小时的同学中随机的抽取两人,其中这两人来自不同的组的概率是多少?答案:(1),平均数:;(2).分析:(1)根据小矩形面积之和为1求出a,进而用每个小矩形面积乘以对应底边的中点值,最后求和得到平均数;(2)先分别算出组与组中抽取的人数,进而列举出所有情况,最后由古典概型公式算出答案.【详解】(1)解得:平均数为:=(2)组:人,记为组:人,记为从6人中任取两人:基本事件总数为15种来自不同的组:共8种所以这两人来自不同组的概率.1.(2023·全国)下列叙述随机事件的频率与概率的关系中哪个是正确的()A.随着试验次数的增加,频率一般会越来越接近概率B.频率是客观存在的,与试验次数无关C.概率是随机的,在试验前不能确定D.频率就是概率答案:A分析:因为概率是在大量重复试验后,事件发生的频率逐渐接近的值,所以就可得到正确答案.【详解】事件的频率是指事件发生的频数与次事件中事件出现的次数比,一般来说,随机事件在每次实验中是否会发生是不能预料的,但在大量重复试验后,随着试验次数的增加,事件发生的频率会逐渐稳定在区间,中的某个常数上,这个常数就是事件的概率.随着试验次数的增加,频率一般会越来越接近概率.故选:A.2.(2023·山东高考真题)现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A. B. C. D.答案:B分析:利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有种方法,其中恰好全都进入同一间教室,共有2种方法,所以.故选:B3.(2023·福建高一期末)已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.9答案:C【解析】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.4.(2023·全国高一课时练习)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称“甲、乙心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A. B. C. D.答案:D分析:由题意,样本点总数为36,可列举出满足条件的样本点共16个,由古典概型的概率公式,即得解【详解】记“|a-b|≤1”为事件A,由于a,b∈{1,2,3,4,5,6},则事件A包含的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司对相关方管理制度
- 浪潮项目风管安装技术交底
- LDHs对铅锌矿尾矿重金属污染土壤钝化效果研究
- 2025标准设备采购合同范本版本
- 河南省信阳市二校联考2024~2025学年 高三下册5月第一次测试数学试卷附解析
- 2025年中考语文(长沙用)课件:专题4 文学作品阅读
- 安徽省安庆市2024-2025学年高二下册期中考试数学试卷
- 受众需求分析模型构建-洞察阐释
- 2024年陕西延安“优师计划地方专项”师范毕业生招聘真题
- 2024年嘉兴桐乡市教育系统招聘教师真题
- 脑机接口技术在康复医学中的应用与展望
- 学校校区年度工作总结
- 西红柿简介介绍
- 2024-2025北京中考英语真题阅读CD篇
- 2022年上海公务员考试《申论》A卷
- 车辆调度培训课件
- 公司职工书屋借阅制度范本
- 2023年全国高中数学联赛试题参考答案
- 凝血分析的质量控制
- 医院2023年灾害脆弱性分析报告
- 超小型智能液压挖掘机机械结构设计-毕业论文
评论
0/150
提交评论