下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七解析几何必记结论1.直线方程的五种形式(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y轴的直线).(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).(3)两点式:=(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:=1(a,b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax+By+C=0(其中A,B不同时为0).2.直线的两种位置关系当不重合的两条直线l1和l2的斜率存在时:(1)两直线平行l1∥l2⇔k1=k2.(2)两直线垂直l1⊥l2⇔k1·k2=-1.3.三种距离公式(1)A(x1,y1),B(x2,y2)两点间的距离|AB|=.(2)点到直线的距离d=(其中点P(x0,y0),直线方程为Ax+By+C=0).(3)两平行线间的距离d=(其中两平行线方程分别为l1:Ax+By+C1=0,l2:Ax+By+C2=0且C1≠C2).4.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数推断法与几何推断法.(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数推断法与几何推断法.6.椭圆的标准方程及几何性质标准方程=1(a>b>0)=1(a>b>0)图形几何性质范围-a≤x≤a,-b≤y≤b-b≤x≤b,-a≤y≤a对称性对称轴:x轴,y轴;对称中心:原点焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)顶点A1(-a,0),A2(a,0);B1(0,-b),B2(0,b)A1(0,-a),A2(0,a);B1(-b,0),B2(b,0)轴线段A1A2,B1B2分别是椭圆的长轴和短轴;长轴长为2a,短轴长为2b焦距|F1F2|=2c离心率焦距与长轴长的比值:e==∈(0,1)a,b,c的关系c2=a2-b27.双曲线的标准方程及几何性质标准方程=1(a>0,b>0)=1(a>0,b>0)图形几何性质范围|x|≥a,y∈R|y|≥a,x∈R对称性对称轴:x轴,y轴;对称中心:原点焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴线段A1A2,B1B2分别是双曲线的实轴和虚轴;实轴长为2a,虚轴长为2b焦距|F1F2|=2c离心率焦距与实轴长的比值:e==∈(1,+∞)渐近线y=±xy=±xa,b,c的关系a2=c2-b28.抛物线的标准方程及几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形几何性质对称轴x轴y轴顶点O(0,0)焦点FFFF准线方程x=-x=y=-y=范围x≥0,y∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R离心率e=19.双曲线的方程与渐近线方程的关系(1)若双曲线的方程为=1(a>0,b>0),则渐近线的方程为=0,即y=±x.(2)若渐近线的方程为y=±x(a>0,b>0),即±=0,则双曲线的方程可设为=λ(λ≠0).(3)若所求双曲线与双曲线=1(a>0,b>0)有公共渐近线,其方程可设为=λ(λ>0,焦点在x轴上;λ<0,焦点在y轴上).10.抛物线焦点弦的相关结论设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α为直线AB的倾斜角,则(1)x1x2=,y1y2=-p2.(2)弦长|AB|=x1+x2+p=.(3)=.(4)以弦AB为直径的圆与准线相切.易错剖析易错点1遗漏方程表示圆的充要条件【突破点】二元二次方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0,在此条件下,再依据其他条件求解.易错点2解决截距问题忽视“0”的情形【突破点】解决直线在两坐标轴上的截距或截距具有某种倍数关系的问题时,需留意两点:(1)截距不是距离,直线在坐标轴上的截距可正、可负、也可为0.(2)明确直线方程的截距式不能表示过原点或与坐标轴垂直的直线.因此解题时应当从截距是否为0进行分类探讨.易错点3忽视斜率不存在的状况【突破点】(1)在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2求解,忽视k1,k2不存在的状况,就会导致漏解.(2)对于解决两直线垂直的相关问题时,若利用l1⊥l2⇔k1·k2=-1求解,要留意其前提条件是k1与k2必需同时存在.易错点4忽视直线与圆锥曲线相交问题中的判别式【突破点】凡是涉及直线与圆锥曲线位置关系的问题,确定不能遗忘对判别式的探讨.易错点5忽视双曲线定义中的条件【突破点】双曲线的定义中,有两点是缺一不行的:其一,确定值;其二,2a<|F1F2|.假如不满意第一个条件,动点到两定点的距离之差为常数,而不是差的确定值为常数,那么其轨迹只能是双曲线的一支.易错点6忽视圆锥曲线定义中的焦点位置【突破点】椭圆的焦点位置由分母的大小确定,双曲线则是依据二次项系数的符号来确定的.解决此类问题时,确定要将方程化为曲线的标准形式.易错快攻易错快攻一忽视直线与圆锥曲线相交问题中的判别式1[2024·新课标Ⅱ卷]已知椭圆C:+y2=1的左、右焦点分别为F1,F2,直线y=x+m与C交于A,B两点,若△F1AB面积是△F2AB面积的2倍,则m=()A.B.C.-D.-易错快攻二遗漏直线的斜率不存在的状况2[2024·新课标Ⅱ卷]已知双曲线C的中心为坐标原点,左焦点为(-2,0),离心率为.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在其次象限,直线MA1与NA2交于点P.证明:点P在定直线上.七解析几何[典例1]解析:由题意,F1(-,0),F2(,0),△F1AB面积是△F2AB面积的2倍,所以点F1到直线AB的距离是点F2到直线AB的距离的2倍,即=2×,解得m=-或m=-3(舍去).故选C.答案:C[典例2](1)解析:设双曲线C的方程为=1(a>0,b>0),c为双曲线C的半焦距,由题意可得,解得.所以双曲线C的方程为=1.(2)解析:方法一设M(x1,y1),N(x2,y2),直线MN的方程为x=my-4,则x1=my1-4,x2=my2-4.联立得,得(4m2-1)y2-32my+48=0.因为直线MN与双曲线C的左支交于M,N两点,所以4m2-1≠0,且Δ>0.由根与系数的关系得,所以y1+y2=y1y2.因为A1,A2分别为双曲线C的左、右顶点,所以A1(-2,0),A2(2,0).直线MA1的方程为=,直线NA2的方程为=,所以=,得===.因为====-3,所以=-3,解得x=-1,所以点P在定直线x=-1上.解析:方法二由题意得A1(-2,0),A2(2,0).设M(x1,y1),N(x2,y2),直线MN的方程为x=my-4,则=1,即=16.如图,连接MA2,=·===4①.由=1,得4x2-y2=-y2=16,4(x-2)2+16(x-2)+16-y2=16,4(x-2)2+16(x-2)-y2=0.由x=my-4,得x-2=my-6,my-(x-2)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑料制品的微观结构与力学性能考核试卷
- 托儿所服务的儿童过敏与过敏原防控考核试卷
- 环境保护创新企业的先锋之路考核试卷
- 建筑物拆除电梯与升降机拆除考核试卷
- 宠物保姆与托儿服务考核试卷
- 建筑物拆除工程施工现场施工资料考核试卷
- 新能源汽车技术与智能交通系统考核试卷
- DB11∕T 3008.1-2018 人力资源服务规范 第1部分:通则
- 课件视频排版教学课件
- 偶戏课件教学课件
- 古代辞章领略古代辞章的风华与韵味
- 六年级道德与法治下册-3-学会反思教案
- 岗位风险排查管理制度
- 新媒体视听节目制作 第一章 新媒体时代导演的基本素养
- 2023-2024学年辽宁省沈阳126中八年级(上)期中数学试卷(含解析)
- 25题退役军人事务员岗位常见面试问题含HR问题考察点及参考回答
- 锅炉炉膛有限空间应急预案
- 深基坑工程质量验收标准
- 生产检验记录表
- 化工厂设计车间布置设计
- 幼儿园故事《水果屋》
评论
0/150
提交评论