2022-2023学年河南省驻马店市驿城区九年级数学第一学期期末监测试题含解析_第1页
2022-2023学年河南省驻马店市驿城区九年级数学第一学期期末监测试题含解析_第2页
2022-2023学年河南省驻马店市驿城区九年级数学第一学期期末监测试题含解析_第3页
2022-2023学年河南省驻马店市驿城区九年级数学第一学期期末监测试题含解析_第4页
2022-2023学年河南省驻马店市驿城区九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,点,,都在上,,则等于()A. B. C. D.2.用配方法解一元二次方程时,原方程可变形为()A. B. C. D.3.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,且点B的坐标为(6,4),如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)4.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.5.已知抛物线,则下列说法正确的是()A.抛物线开口向下 B.抛物线的对称轴是直线C.当时,的最大值为 D.抛物线与轴的交点为6.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.17.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为()A. B.C. D.8.阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是()A. B.C. D.9.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A.y=﹣x2+6x(3<x<6) B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12) D.y=﹣x2+6x(0<x<6)10.如图,点,为直线上的两点,过,两点分别作轴的平行线交双曲线()于、两点.若,则的值为()A.12 B.7 C.6 D.411.从1到9这9个自然数中任取一个,是偶数的概率是()A. B. C. D.12.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.sin245°+cos60°=____________.14.用纸板制作了一个圆锥模型,它的底面半径为1,高为,则这个圆锥的侧面积为_________.15.如图,∠DAB=∠CAE,请补充一个条件:________________,使△ABC∽△ADE.16.某校共1600名学生,为了解学生最喜欢的课外体育活动情况,学校随机抽查了200名学生,其中有92名学生表示喜欢的项目是跳绳,据此估计全校喜欢跳绳这项体育活动的学生有____________人.17.已知二次函数,与的部分对应值如下表所示:…-101234……61-2-3-2m…下面有四个论断:①抛物线的顶点为;②;③关于的方程的解为;④.其中,正确的有___________________.18.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.三、解答题(共78分)19.(8分)先化简,再求值:,其中x=1.20.(8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?21.(8分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tan∠DCO=,过点A作AE⊥x轴于点E,若点C是OE的中点,且点A的横坐标为﹣1.,(1)求该反比例函数和一次函数的解析式;(2)连接ED,求△ADE的面积.22.(10分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)23.(10分)已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.24.(10分)如图,是线段上--动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数)通过画图、测量、计算,得到了与的几组值,如下表:补全表格中的数值:;;.根据表中数值,继续描出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;结合函数图象,直接写出当的面积等于时,的长度约为____.25.(12分)解方程:(1)x(2x﹣1)+2x﹣1=0(2)3x2﹣6x﹣2=026.如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,;(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】连接OC,根据等边对等角即可得到∠B=∠BCO,∠A=∠ACO,从而求得∠ACB的度数,然后根据圆周角定理即可求解.【详解】连接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO,∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故选:C.【点睛】本题考查了圆周角定理,正确作出辅助线,求得∠ACB的度数是关键.2、B【解析】试题分析:,,.故选B.考点:解一元二次方程-配方法.3、D【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【详解】解:∵矩形OA′B′C′的面积等于矩形OABC面积的,

∴两矩形面积的相似比为:1:2,

∵B的坐标是(6,4),∴点B′的坐标是:(3,2)或(-3,-2).

故选:D.【点睛】此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.4、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C.考点:简单几何体的三视图.5、D【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断.【详解】A、a=1>0,则抛物线的开口向上,所以A选项错误;B、抛物线的对称轴为直线x=1,所以B选项错误;C、当x=1时,有最小值为,所以C选项错误;D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确.故选:D.【点睛】本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.6、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;

又由于函数图象位于一、三象限,则k=4.

故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.7、D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.8、D【解析】根据中点坐标公式求得点的坐标,然后代入满足的等式进行求解即可.【详解】∵点,点,点为弦的中点,∴,,∴,又满足等式:,∴,故选D.【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.9、D【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答.【详解】解:已知一边长为xcm,则另一边长为(6-x)cm.

则y=x(6-x)化简可得y=-x2+6x,(0<x<6),

故选:D.【点睛】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.10、C【分析】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据BD=2AC即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【详解】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b.∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线(x>0)上,则CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),两边平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故选:C.【点睛】本题考查了反比例函数与勾股定理的综合应用,正确利用BD=2AC得到a,b的关系是关键.11、B【解析】∵在1到9这9个自然数中,偶数共有4个,∴从这9个自然数中任取一个,是偶数的概率为:.故选B.12、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【点睛】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.二、填空题(每题4分,共24分)13、1【分析】利用特殊三角函数值代入求解.【详解】解:原式=【点睛】熟记特殊的三角函数值是解题的关键.14、【分析】根据圆锥的侧面积公式计算即可得到结果.【详解】解:根据题意得:S=π×1×=3π,

故填:3π.【点睛】此题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解本题的关键.15、解:∠D=∠B或∠AED=∠C.【分析】根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE

∴∠DAE=∠BAC

∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.

故答案为∠D=∠B(答案不唯一).16、736【分析】由题意根据样本数据的比值和相对应得总体数据比值相同进行分析求解即可.【详解】解:设全校喜欢跳绳这项体育活动的学生有m人,由题意可得:,解得.所以全校喜欢跳绳这项体育活动的学生有736人.故答案为:736.【点睛】本题考查的是通过样本去估计总体对应的数据,熟练掌握通过样本去估计总体对应数据的方法是解题的关键.17、①③.【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,其中,正确的有.①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.18、2π【解析】试题分析:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB=,即圆锥的母线长为2,∴圆锥的侧面积=.考点:圆锥的计算.三、解答题(共78分)19、,.【分析】直接将括号里面通分运算,进而利用分式的性质化简得出答案.【详解】解:原式===,当x=1时,原式=.【点睛】本题考查的是分式的化简求值,比较简单,记住先化简再求值.20、(1)8;(2).【分析】找出临界点即可.【详解】(1)8;∵点在双曲线上,

∴,

∴解得:.

当时,,

所以当时,大棚内的温度约为.【点睛】理解临界点的含义是解题的关键.21、(1)y=﹣x﹣3,y=﹣;(2)S△ADE=2.【分析】(1)根据题意求得OE=1,OC=2,Rt△COD中,tan∠DCO=,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),运用待定系数法即可求得反比例函数与一次函数的解析式;

(2)求得两个三角形的面积,然后根据S△ADE=S△ACE+S△DCE即可求得.【详解】(1)∵AE⊥x轴于点E,点C是OE的中点,且点A的横坐标为﹣1,∴OE=1,OC=2,∵Rt△COD中,tan∠DCO=,∴OD=3,∴A(﹣1,3),∴D(0,﹣3),C(﹣2,0),∵直线y=ax+b(a≠0)与x轴、y轴分别交于C、D两点,∴,解得,∴一次函数的解析式为y=﹣x﹣3,把点A的坐标(﹣1,3)代入,可得3=,解得k=﹣12,∴反比例函数解析式为y=﹣;(2)S△ADE=S△ACE+S△DCE=EC•AE+EC•OD=×2×3+=2.22、台灯的高约为45cm.【分析】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,可得四边形DGFH是矩形,可得DG=FH,根据∠A的余弦可求出AC的长,进而可得AD的长,根据∠A的正弦即可求出DG的长,由∠ADE=135°可得∠EDH=15°,根据∠DEH的正弦可得EH的长,根据EF=EH+FH求出EF的长即可得答案.【详解】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,∴四边形DGFH是矩形,∴DG=FH,∵∠A=60°,AB=16,∴AC=AB·cos60°=16×=8,∴AD=AC+CD=8+40=48,∴DG=AD·sin60°=24,∵DH⊥EF,AF⊥EF,∴DH//AF,∴∠ADH=180°-∠A=120°,∵∠ADE=135°,∴∠EDH=∠ADE-∠ADH=15°,∵DE=15,∴EH=DE·sin15°≈3.9,∴EF=EH+FH=EH+DG=24+3.9≈45,答:台灯的高约为45cm.【点睛】本题主要考查解直角三角形的应用,正确应用锐角三角函数的关系是解题关键.23、见解析证明.【解析】试题分析:连结OC,根据平行线的性质得到∠1=∠B,∠2=∠3,而∠B=∠3,所以∠1=∠2,则根据圆心角、弧、弦的关系即可得到结论.试题解析:连结OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.考点:圆心角、弧、弦的关系.24、(1)3.1,9.3,7.3;(2)见解析;(3)或.【分析】D(1)如图1,当x=1.5时,点C在C处,x=2.0时,点C在C1处,此时,D'C'=DC,则,同理可求b、c;(2)依据表格数据描点即可;(3)从图象可以得出答案.【详解】解:如图当x=1.5时,点C在C处,x=2.0时,点C在C1处∴D'C'=DC∴同理可得:b=9.3,c=7.3∴(允许合理的误差存在)如图由函数图像可知,当时,随增大而增大,当时,随增大而减小;当时,的最大值为.由函数图像可知,或【点睛】本题考查的是二次函数综合应用,确定未知点数据、再描点、准确画出函数图像是解答本题的关键.25、(1)x1=,x2=﹣1;(2)x1=,x2=【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;

(2)求出b2-4ac的值,再代入公式求出即可.【详解】(1)x(2x﹣1)+2x﹣1=0,(2x﹣1)(x+1)=0,2x﹣1=0,x+1=0,x1=,x2=﹣1;(2)3x2﹣6x﹣2=0,这里a=3,b=-6,c=-2b2﹣4ac=(﹣6)2﹣4×3×(﹣2)=60,x=,x1=,x2=.【点睛】本题考查了解一元二次方程的应用,能选择适当的方法解方程是解此题的关键.26、(1)y=x1+4x-1;(1)∴m=,-1,或-3时S四边形OBDC=1SS△BPD【解析】试题分析:(1)由x=0时带入y=x-1求出y的值求出B的坐标,当x=-3时,代入y=x-1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;(1)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和1S△BPD建立方程求出其解即可.(3)如图1,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论