




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的最大整数是()A.1 B.0 C.﹣1 D.﹣22.下列说法正确的是()A.若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B.可能性很大的事件在一次试验中必然会发生C.相等的圆心角所对的弧相等是随机事件D.掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等3.下列命题正确的是()A.三点确定一个圆 B.圆中平分弦的直径必垂直于弦C.矩形一定有外接圆 D.三角形的内心是三角形三条中线的交点4.m是方程的一个根,且,则的值为()A. B.1 C. D.5.如图,是的直径,且,是上一点,将弧沿直线翻折,若翻折后的圆弧恰好经过点,取,,,那么由线段、和弧所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.26.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确7.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.68.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.9.将二次函数通过配方可化为的形式,结果为()A. B.C. D.10.某林业部门要考察某幼苗的成活率,于是进行了试验,下表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数400150035007000900014000成活数369133532036335807312628成活的频率09230.89009150.9050.8970.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率二、填空题(每小题3分,共24分)11.如图,,如果,,,那么___________.12.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.13.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=_____.14.在△ABC中,AB=10,AC=8,B为锐角且,则BC=_____.15.正六边形的中心角等于______度.16.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.17.在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是_______.18.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,1,5,9;乙:9,6,1,10,7,1.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组19乙组11(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.三、解答题(共66分)19.(10分)关于的一元二次方程有实数根.(1)求的取值范围;(2)如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.20.(6分)根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;xL﹣3﹣2﹣1012345LyL30﹣1030﹣103L由上表可知,a=,b=;(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.21.(6分)如图1,若二次函数的图像与轴交于点(-1,0)、,与轴交于点(0,4),连接、,且抛物线的对称轴为直线.(1)求二次函数的解析式;(2)若点是抛物线在一象限内上方一动点,且点在对称轴的右侧,连接、,是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,若点是抛物线上一动点,且满足,请直接写出点坐标.22.(8分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?23.(8分)如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为cm,P,D两点之间的距离为cm.小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为___________.24.(8分)如图,点在以为直径的上,的平分线交于点,过点作的平行线交的延长线于点.(1)求证:是的切线;(2)若,,求的长度.25.(10分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?26.(10分)如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题意知,,代入数据,即可求解.【详解】由题意知:一元二次方程x2+2x+k=1有两个不相等的实数根,∴解得∴.∴k的最大整数是1.故选B.【点睛】本题主要考查了利用一元二次方程根的情况求参数范围,正确掌握利用一元二次方程根的情况求参数范围的方法是解题的关键.2、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断.【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误.B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C.【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键.3、C【分析】根据确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,进行判断即可.【详解】∵不在一条直线上的三点确定一个圆,∴A错误;∵圆中平分弦(不是直径)的直径必垂直于弦,∴B错误;∵矩形一定有外接圆,∴C正确;∵三角形的内心是三角形三条角平分线的交点,∴D错误;故选:C.【点睛】本题主要考查真假命题的判断,掌握确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,是解题的关键.4、A【解析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得m+n=-1;
故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.5、C【分析】作OE⊥AC交⊙O于F,交AC于E,连接CO,根据折叠的性质得到OE=OF,根据直角三角形的性质求出∠CAB,再得到∠COB,再分别求出S△ACO与S扇形BCO即可求解..【详解】作OE⊥AC交⊙O于F,交AC于E,由折叠的性质可知,EF=OE=OF,∴OE=OA,在Rt△AOE中,OE=OA,∴∠CAB=30°,连接CO,故∠BOC=60°∵∴r=2,OE=1,AC=2AE=2×=2∴线段、和弧所围成的曲边三角形的面积为S△ACO+S扇形BCO===≈3.8故选C.【点睛】本题考查的是翻折变换的性质、圆周角定理,扇形的面积求解,解题的关键是熟知折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6、A【分析】如图1,根据线段垂直平分线的性质得到,,则根据“”可判断,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形为平行四边形,则根据平行四边形的性质得到,,则根据“”可判断,则可对乙进行判断.【详解】解:如图1,垂直平分,,,而,,所以甲正确;如图2,,,∴四边形为平行四边形,,,而,,所以乙正确.故选:A.【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.7、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.8、A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.9、A【分析】根据完全平方公式:配方即可.【详解】解:==故选A.【点睛】此题考查的是利用配方法将二次函数的一般式化为顶点式,掌握完全平方公式是解决此题的关键.10、B【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率即可得到答案.【详解】解:由此估计这种幼苗在此条件下成活的概率约为0.9,故A选项正确;如果在此条件下再移植这种幼苗20000株,则大约成活18000株,故B选项错误;可以用试验次数累计最多时的频率作为概率的估计值,故C选项正确;在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,故D选项正确.故选:B.【点睛】本题主要考查的是利用频率估计概率,大量反复试验下频率稳定值即概率,掌握这个知识点是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【详解】解:∵l1∥l2∥l3,
∴,即,
∴DE=1.故答案为:1【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.12、【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,
∴底面半径为2,
∴V=πr2h=22×6•π=24π,
故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.13、2【详解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2,故答案为2.14、8+2或8﹣2【分析】分两种情况进行解答,即①∠ACB为锐角,②∠ACB为钝角,分别画出图形,利用三角函数解直角三角形即可.【详解】过点A作AD⊥BC,垂足为D,①当∠ACB为锐角时,如图1,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD+CD=8+2,②当∠ACB为钝角时,如图2,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD﹣CD=8﹣2,故答案为:8+2或8﹣2.【点睛】考查直角三角形的边角关系,理解锐角三角函数的意义是正确解答的关键,分类讨论在此类问题中经常用到.15、60°【分析】根据正n边形中心角的公式直接求解即可.【详解】解:正六边形的圆心角等于一个周角,即为,正六边形有6个中心角,所以每个中心角=故答案为:60°【点睛】本题考查正六边形,解答本题的关键是掌握正六边形的性质,熟悉正六边形的中心角的概念16、20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【详解】设黄球的个数为x个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,∴=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.17、(0,-1)【分析】在平面直角坐标系中画出图形,根据已知条件列出方程并求解,从而确定点关于点中心对称的点的坐标.【详解】解:连接并延长到点,使,设,过作轴于点,如图:在和中∴∴,∵,∴,∴,∴故答案是:【点睛】本题考查了一个点关于某个点对称的点的坐标,关键在于掌握点的坐标的变化规律.18、(1),1.5,1;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:甲组数据由小到大排列为:5,7,1,9,9,10故甲组中位数:(1+9)÷2=1.5乙组平均分:(9+6+1+10+7+1)÷6=1填表如下:平均分方差众数中位数甲组191.5乙组111(2)两队的平均分相同,但乙组的方差小于甲组,所以乙组成绩更稳定.故答案为:,1.5,1;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.三、解答题(共66分)19、(1);(2)的值为.【分析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足.【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,∵一元二次方程与方程有一个相同的根,∴当时,,解得;当时,,解得,而,∴的值为.【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.20、(1)﹣1,﹣1;(1)详见解析;(3)函数关于x=1对称;(4)0<m<1.【分析】(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4,得到关于a、b的一元二次方程,解方程组即可求得;(1)描点法画图即可;(3)根据图象即可得到函数关于x=1对称;(4)结合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解.【详解】解:(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4(b<0),得,解得a=﹣1,b=﹣1,故答案为﹣1,﹣1;(1)画出函数图象如图:(3)该函数的一条性质:函数关于x=1对称;(4)∵方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解∴二次函数y=x1+ax﹣4|x+b|+4的图像与一次函数y=x+m至少有三个交点,根据一次函数图像的变化趋势,∴当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,故答案为0<m<1.【点睛】本题考查了二次函数的综合应用,熟练掌握并灵活运用是解题的关键.21、(1)(2)存在,(3)Q点的坐标为或【分析】(1)根据抛物线的对称性求出,再利用待定系数法求解即可;(2)连接OP,设,根据三角形面积的关系可得,即可求出P点的坐标;(3)分两种情况:①当Q在BC的上方时,过C作交AB于D;②当Q在BC的下方时,连接BQ交y轴于点E,根据全等三角形的性质联立方程求解即可.【详解】(1)∵抛物线的对称轴为直线解得;(2)连接OP设∵P在对称轴的右侧;(3)①当Q在BC的上方时,过C作交AB于D设CD的解析式为∴设BQ的解析式为解得②当Q在BC的下方时,连接BQ交y轴于点E设BE的解析式为解得综上所述,Q点的坐标为或.【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质、待定系数法、三角形面积公式、一次函数的性质、全等三角形的性质、平行线的性质、解方程组的方法是解题的关键.22、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.【点睛】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.23、(2)m=2.23;(2)见解析;(3)4.3【分析】(2)根据表格中的数据可得:当x=5或2时,y2=2.00,然后画出图形如图,可得当与时,,过点P作PM⊥AB于M,然后根据等腰三角形的性质和勾股定理求出PM的长即得m的值;(2)用光滑的曲线依次连接各点即可;(3)由题意AD=2PD可得x=2y2,只要在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,然后结合图象解答即可.【详解】解:(2)由表格可知:当x=5或2时,y2=2.00,如图,即当时,,时,,∴,过点P作PM⊥AB于M,则,则在Rt△中,,即当x=6时,m=2.23;(2)如图:(3)由题意得:AD=2PD,即x=2y2,即在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,如图,点Q的位置即为所求,此时,x≈4.3,即AD≈4.3.故答案为:4.3.【点睛】本题主要考查了函数图象的规律、等腰三角形的性质、勾股定理和圆的有关知识,正确理解题意、把握题中的规律、熟练运用数形结合的思想方法是解题关键.24、(1)见解析;(2)【分析】(1)连接OD,由为的直径得到∠ACB=90,根据CD平分∠ACB及圆周角定理得到∠AOD=90,再根据DE∥AB推出OD⊥DE,即可得到是的切线;(2)过点C作CH⊥AB于H,CD交AB于M,利用勾股定理求出AB,再利用面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机软件升级合同
- 维修工程劳务合同
- 法人授权协议
- 五金批发市场企业品牌传播渠道拓展与优化考核试卷
- 洗涤设备的定制化市场需求考核试卷
- 玻璃制品检测仪器操作考核试卷
- 百货零售企业风险管理体系构建考核试卷
- 电动汽车噪音与振动控制技术考核试卷
- 矿物加工过程中的数学建模与应用-石墨滑石考核试卷
- 绢纺和丝织的智能制造技术发展现状与趋势分析考核试卷
- 压轴题10 压强与浮力选填压轴题(解析版)-2023年中考物理压轴题专项训练
- 中医外科 男性不育症
- (正式版)JTT 1490-2024 港口安全设施分类与编码
- 21《杨氏之子》公开课一等奖创新教案
- 车辆应急预案方案恶劣天气
- 【部编版】语文五年级下册第五单元《交流平台 初试身手》精美课件
- 枇杷文化知识讲座
- 浙江伟锋药业有限公司年产100吨拉米夫定、50吨恩曲他滨、30吨卡培他滨技改项目环境影响报告
- 公路养护安全作业规程-四级公路养护作业控制区布置
- 八年级家长会领导讲话4篇
- 美世国际职位评估体系IPE3.0使用手册
评论
0/150
提交评论