2022-2023学年贵阳市数学九年级第一学期期末联考试题含解析_第1页
2022-2023学年贵阳市数学九年级第一学期期末联考试题含解析_第2页
2022-2023学年贵阳市数学九年级第一学期期末联考试题含解析_第3页
2022-2023学年贵阳市数学九年级第一学期期末联考试题含解析_第4页
2022-2023学年贵阳市数学九年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知一次函数和二次函数部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…当y2>y1时,自变量x的取值范围是A.-1<x<2 B.4<x<5 C.x<-1或x>5 D.x<-1或x>42.如图,AB与CD相交于点E,点F在线段BC上,且AC//EF//DB,若BE=5,BF=3,AE=BC,则的值为()A. B. C. D.3.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数4.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34° B.46° C.56° D.66°5.如图,将绕点逆时针旋转,旋转角为,得到,这时点,,恰好在同一直线上,下列结论一定正确的是()A. B. C. D.6.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:17.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.108.定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为“相似方程”,例如,的实数根是3或6,的实数根是1或2,,则一元二次方程与为相似方程.下列各组方程不是相似方程的是()A.与 B.与C.与 D.与9.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>1;②b2﹣4ac>1;③9a﹣3b+c=1;④若点(﹣1.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<1.其中正确的个数有()A.2 B.3 C.4 D.510.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法 B.列举法 C.从特殊到一般 D.反证法二、填空题(每小题3分,共24分)11.在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的⊙P的圆心P从点A(4,m)出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.12.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.13.已知点是线段的一个黄金分割点,且,,那么__________.14.已知菱形中,,,边上有点点两动点,始终保持,连接取中点并连接则的最小值是_______.15.如图,△ABC是边长为2的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作;取中点,作∥,∥,得到四边形,它的面积记作.照此规律作下去,则=____________________.16.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是____.17.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为__.18.小芳的房间有一面积为3

m2的玻璃窗,她站在室内离窗子4

m的地方向外看,她能看到窗前面一幢楼房的面积有____m2(楼之间的距离为20

m).三、解答题(共66分)19.(10分)如图,二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,顶点坐标为(1,﹣4)(1)求二次函数解析式;(2)该二次函数图象上是否存在点M,使S△MAB=S△CAB,若存在,求出点M的坐标.20.(6分)如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).21.(6分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球B:乒乓球C:羽毛球D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)23.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(-2,-2),B(-4,-1),C(-4,-4).(1)画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;(2)将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.24.(8分)2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是;扇形统计图中不及格学生所占的圆心角的度数为;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?25.(10分)在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是;(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;(3)当⊙O的半径r=2时,直线y=-x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围.26.(10分)作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(1,5),-1<x<1时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=1时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(1,5),而-1<x<1时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>1.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.2、A【分析】根据平行线分线段成比例定理得可求出BC的长,从而可得CF的长,再根据平行线分线段成比例定理得,求解即可得.【详解】又,解得又故选:A.【点睛】本题考查了平行线分线段成比例定理,根据定理求出BC的长是解题关键.3、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4、C【解析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.【点睛】此题考查了圆周角定理以及直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.5、C【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【详解】∵将△ABC绕点A逆时针旋转,旋转角为α,

∴AB=AD,∠BAD=α,

∴∠B=

故选:C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.6、B【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.7、D【解析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.8、C【分析】根据“相似方程”的定义逐项分析即可.【详解】A.∵,∴.∴x1=4,x2=-4,∵,∴x1=5,x2=-5.∵4:(-4)=5:(5),∴与是相似方程,故不符合题意;B.∵,∴x1=x2=6.∵,∴(x+2)2=0,∴x1=x2=-2.∵6:6=(-2):(-2),∴与是相似方程,故不符合题意;C.∵,∴,∴x1=0,x2=7.∵,∴,∴(x-2)(x+3)=0,∴x1=2,x2=-3.∵0:7≠2:(-3),∴与不是相似方程,符合题意;D.∵,∴x1=-2,x2=-8.∵,∴(x-1)(x-4)=0,∴x1=1,x2=4.∵(-2):(-8)=1:4,∴与是相似方程,故不符合题意;故选C.【点睛】本题考查了新定义运算,以及一元二次方程的解法,正确理解“相似方程”的定义是解答本题的关键.9、B【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1,1),∴-=-1,a+b+c=1,∴b=2a,c=-3a,∵a>1,∴b>1,c<1,∴abc<1,故①错误,∵抛物线对称轴x=-1,经过(1,1),可知抛物线与x轴还有另外一个交点(-3,1)∴抛物线与x轴有两个交点,∴b2-4ac>1,故②正确,∵抛物线与x轴交于(-3,1),∴9a-3b+c=1,故③正确,∵点(-1.5,y1),(-2,y2)均在抛物线上,(-1.5,y1)关于对称轴的对称点为(-1.5,y1)(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y1<y2;故④错误,∵5a-2b+c=5a-4a-3a=-2a<1,故⑤正确,故选B.【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.二、填空题(每小题3分,共24分)11、1,3,5【分析】设⊙P与坐标轴的切点为D,根据一次函数图象上点的坐标特征可得出点A、B、C的坐标,即可求出AB、AC的长,可得△OBC是等腰直角三角形,分⊙P只与x轴相切、与x轴、y轴同时相切、只与y轴相切三种情况,根据切线的性质和等腰直角三角形的性质分别求出AP的长,即可得答案.【详解】设⊙P与坐标轴的切点为D,∵直线y=x-2与x轴、y轴分别交于点B、C,点A坐标为(4,m),∴x=0时,y=-2,y=0时,x=2,x=4时,y=2,∴A(4,2),B(2,0),C(0,-2),∴AB=2,AC=4,OB=OC=2,∴△OBC是等腰直角三角形,∠OBC=45°,①如图,当⊙P只与x轴相切时,∵点D为切点,⊙P的半径为1,∴PD⊥x轴,PD=1,∴△BDP是等腰直角三角形,∴BD=PD=1,∴BP=,∴AP=AB-BP=,∵点P的速度为个单位长度,∴t=1,②如图,⊙P与x轴、y轴同时相切时,同①得PB=,∴AP=AB+PB=3,∵点P的速度为个单位长度,∴t=3.③如图,⊙P只与y轴相切时,同①得PB=,∴AP=AC+PB=5,∵点P的速度为个单位长度,∴t=5.综上所述:t的值为1、3、5时,⊙P与坐标轴相切,故答案为:1,3,5【点睛】本题考查切线的性质及一次函数图象上点的坐标特征,一次函数图象上的点的坐标都适合该一次函数的解析式;圆的切线垂直于过切点的直径;熟练掌握切线的性质是解题关键.12、1.【详解】解:设圆锥的底面圆半径为r,根据题意得1πr=,解得r=1,即圆锥的底面圆半径为1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.13、【分析】根据黄金分割的概念得到,把代入计算即可.【详解】∵P是线段AB的黄金分割点,∴故答案为.【点睛】本题考查了黄金分割点的应用,理解黄金分割点的比例并会运算是解题的关键.14、1【分析】过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.由菱形性质和可证明,进而可得,由BM最小值为BH即可求解.【详解】解:过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.∵在菱形中,,,∴,,∴,∵,,∴,∴,又∵,∴,∴,又∵,∴,∴当BM最小时FG最小,根据点到直线的距离垂线段最短可知,BM的最小值等于BH,∵在菱形中,,∴又∵在Rt△CHD中,,∴,∴,∴AM的最小值为6,∴的最小值是1.故答案为:1.【点睛】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键.15、【分析】先求出△ABC的面积,再根据中位线性质求出S1,同理求出S2,以此类推,找出规律即可得出S2019的值.【详解】∵△ABC是边长为2的等边三角形,∴△ABC的高=∴S△ABC=,∵E是BC边的中点,ED∥AB,∴ED是△ABC的中位线,∴ED=AB∴S△CDE=S△ABC,同理可得S△BEF=S△ABC∴S1=S△ABC==,同理可求S2=S△BEF=S△ABC==,以此类推,Sn=·S△ABC=∴S2019=.【点睛】本题考查中位线的性质和相似多边形的性质,熟练运用性质计算出S1和S2,然后找出规律是解题的关键.16、.【分析】用列表法或画树状图法分析所有等可能的结果,然后根据概率公式求出该事件的概率.【详解】解:画树状图如下:

∵一共有6种情况,两个球都是白球有2种,

∴P(两个球都是白球),

故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17、【解析】试题解析:如图:连接OA交BC于D,连接OC,是等边三角形,是外心,故答案为18、108【解析】考点:平行投影;相似三角形的应用.分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有36×3=108m1.点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点.注意平行投影特点:在同一时刻,不同物体的物高和影长成比例三、解答题(共66分)19、(1)y=x2﹣2x﹣3;(2存在,点M的坐标为(1+,3),(1﹣,3)或(2,﹣3)【分析】(1)二次函数y=ax2+bx﹣3的顶点坐标为(1,﹣4),可以求得a、b的值,从而可以得到该函数的解析式;(2)根据(1)中求得的函数解析式可以得到点C的坐标,再根据S△MAB=S△CAB,即可得到点M的纵坐标的绝对值等于点C的纵坐标的绝对值,从而可以求得点M的坐标.【详解】解:(1)∵二次函数y=ax2+bx﹣3的顶点坐标为(1,﹣4),∴,得,∴该函数的解析式为y=x2﹣2x﹣3;(2)该二次函数图象上存在点M,使S△MAB=S△CAB,∵y=x2﹣2x﹣3=(x﹣3)(x+1),∴当x=0时,y=﹣3,当y=0时,x=3或x=﹣1,∵二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,∴点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(0,﹣3),∵S△MAB=S△CAB,点M在抛物线上,∴点M的纵坐标是3或﹣3,当y=3时,3=x2﹣2x﹣3,得x1=1+,x2=1﹣;当y=﹣3时,﹣3=x2﹣2x﹣3,得x3=0或x4=2;∴点M的坐标为(1+,3),(1﹣,3)或(2,﹣3).故答案为:(1)y=x2﹣2x﹣3;(2)存在,点M的坐标为(1+,3),(1﹣,3)或(2,﹣3).【点睛】本题考查了二次函数与方程,几何知识的综合运用.将函数知识与方程,几何知识有机地结合起来,这类试题难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质,定理和二次函数的知识.20、(1)﹣3,1;(2)y=x+4,4;(3)﹣3≤x≤﹣1.【分析】(1)已知反比例函数y=过点A(﹣1,3),B(﹣3,n)分别代入求得m、n的值即可;(2)用待定系数法求出一次函数的解析式,再求得一次函数与x轴的交点坐标,根据S△AOB=S△AOC﹣S△BOC即可求得△AOB的面积;(3)观察图象,确定一次函数图象在反比例函数图象上方时对应的x的取值范围即可.【详解】(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C∴0=x+4∴x=﹣4∴C(﹣4,0)∵S△AOB=S△AOC﹣S△BOC∴S△AOB=×4×3﹣×4×1=4(3)∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点睛】本题考查了反比例函数与一次函数交点问题、用待定系数法求解析式、用图象法解不等式及用三角形面积的和差求三角形的面积,知识点较为综合但题目难度不大.21、解:(1)1.(2)补全图形,如图所示:(3)列表如下:

﹣﹣﹣

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

﹣﹣﹣

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

﹣﹣﹣

(丁,丙)

(甲,丁)

(乙,丁)

(丙,丁)

﹣﹣﹣

∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为.【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数:(人).(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可.(3)根据题意列出表格或画树状图,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.22、.【分析】利用画树状图法得到总的可能和可能发生的结果数,即可求出概率.【详解】解:画树状图为:共有16种等可能的结果数,其中红色和蓝色的结果数4,所以摸到的两个球的颜色能配成紫色的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23、(1)详见解析;(2,-2);(2)详见解析;(-4,4)【分析】(1)分别得出A、B、C三点关于点P的中心对称点,然后依次连接对应点可得;(2)分别做A、B、C三点绕O点顺时针旋转90°的点,然后依次连接对应点即可.【详解】(1)△A1B1C1如下图所示.点A1的坐标为(2,-2)(2)△A2B2C2如上图所示.点C2的坐标为(-4,4).【点睛】本题考查绘制中心对称图形和绘制旋转图形,解题关键是绘制图形中的关键点的对应点.24、(1)120,18°;(2)详见解析;(3)1000【分析】(1)由优秀的人数及其所占百分比可得总人数;用360°乘以不及格人数所占比例即可得出不及格学生所占的圆心角的度数;(2)用总人数减去各等级人数之和求出良好的人数,据此可补全条形图;(3)用总人数乘以样本中“优秀”和“良好”人数和占被调查人数的比例即可得出答案.【详解】解:(1)本次抽查的人数为:24÷20%=120(人),扇形统计图中不及格学生所占的圆心角的度数为360°×=18°,故答案为:120,18°;(2)良好的人数为:120﹣(24+54+6)=36(人),补全图形如下:(3)估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有:2000×=1000(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25、(1)A,C;(2);(3)1≤b≤或-≤b≤-1.【分析】(1)根据已知条件求出d的范围:1≤d≤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论