版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
备战2024年中考数学模拟卷(陕西专用)黄金卷08(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。写在本试卷上无效。4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。写在本试卷上无效。5.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共8小题,每小题3分,共24分。1.(2023·浙江嘉兴·统考中考真题)下面四个数中,比1小的正无理数是()A. B. C. D.【答案】A【分析】根据正数负数,即可进行解答.【详解】解:∵∴∴∴比1小的正无理数是.故选:A.2.剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人视觉上以镂空的感觉和艺术享受.下列剪纸图案中,既是轴对称图形又是中心对称图形的是(
)A. B. C. D.【答案】D【分析】本题主要考查了轴对称图形、中心对称图形的识别,“一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”,“如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形”,根据定义逐项判断即可得出答案.【详解】解:A,该图形是轴对称图形,不是中心对称图形,不合题意;B,该图形是轴对称图形,不是中心对称图形,不合题意;C,该图形不是轴对称图形,是中心对称图形,不合题意;D,该图形即是轴对称图形,也是中心对称图形,符合题意;故选:D.3.(2023·辽宁大连·统考中考真题)如图,直线,则的度数为(
)A. B. C. D.【答案】B【分析】先根据平行线的性质可得,再根据三角形的外角性质即可得.【详解】解:,,,,故选:B.4.(2023·浙江绍兴·统考中考真题)下列计算正确的是(
)A. B. C. D.【答案】C【分析】根据同底数幂相除法则判断选项A;根据幂的乘方法则判断选项B;根据平方差公式判断选项C;根据完全平方公式判断选项D即可.【详解】解:A.,原计算错误,不符合题意;B.,原计算错误,不符合题意;C.,原计算正确,符合题意;D.,原计算错误,不符合题意;故选:C.5.(2023·甘肃兰州·统考中考真题)一次函数的函数值y随x的增大而减小,当时,y的值可以是(
)A.2 B.1 C.-1 D.-2【答案】D【分析】根据一次函数的增减性可得k的取值范围,再把代入函数,从而判断函数值y的取值.【详解】∵一次函数的函数值y随x的增大而减小∴∴当时,故选:D.6.(2023·四川内江·统考中考真题)如图,在中,点D、E为边的三等分点,点F、G在边上,,点H为与的交点.若,则的长为()
A.1 B. C.2 D.3【答案】C【分析】由三等分点的定义与平行线的性质得出,,,是的中位线,易证,得,解得,则.【详解】解:、为边的三等分点,,,,,,是的中位线,,,,,即,解得:,,故选:C.7.(2023·新疆·统考中考真题)如图,在中,若,,则扇形(阴影部分)的面积是(
)
A. B. C. D.【答案】B【分析】根据圆周角定理求得,然后根据扇形面积公式进行计算即可求解.【详解】解:∵,,∴,∴.故选:B.8.(2023·四川成都·统考中考真题)如图,二次函数的图象与x轴交于,两点,下列说法正确的是(
)
A.抛物线的对称轴为直线 B.抛物线的顶点坐标为C.,两点之间的距离为 D.当时,的值随值的增大而增大【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数的图象与x轴交于,两点,∴∴∴二次函数解析式为,对称轴为直线,顶点坐标为,故A,B选项不正确,不符合题意;∵,抛物线开口向上,当时,的值随值的增大而减小,故D选项不正确,不符合题意;当时,即∴,∴,故C选项正确,符合题意;故选:C.二、填空题:本题共5小题,共15分。9.已知a,b都是实数,若则_______.【答案】-3【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+1=0,b-2=0,解得a=-1,b=2,所以,a-b=-1-2=-3.故答案为:-3.10.如图,为正六边形,为正方形,连接CG,则∠BCG+∠BGC=______.
【答案】【分析】分别计算正六边形和正方形的每个内角的度数,再利用三角形的内角和定理即可得出答案.【详解】解:∵ABDEF是正六边形,∴∵ABGH是正方形,∴∵∴∵∴故答案为:11.如图,中,是上任意一点,于点于点F,若,则________.
【答案】1【分析】将的面积拆成两个三角形面积之和,即可间接求出的值.【详解】解:连接,如下图:
于点于点,,,,故答案是:1.12.如图,是等腰三角形,过原点,底边轴双曲线过,两点,过点作轴交双曲线于点,若,则的值是______.【答案】3【分析】设点A坐标为(,),根据已知条件可得到点B坐标为(,),点C坐标为(,),然后得到点D得坐标为(,),表示出的面积解出k即可.【详解】解:设点A坐标为(,),∵是等腰三角形,过原点,底边轴,∴点B坐标为(,),点C坐标为(,),∵轴交双曲线于点,∴点D坐标为(,),∴,,∴,∴即.故答案为:13.如图,在矩形中,,.点在边上,且,、分别是边、上的动点,且,是线段上的动点,连接,.若.则线段的长为___.【答案】【分析】由题意知是等腰直角三角形,作点关于的对称点,则在直线上,连接,,.即,,,所以此时、、三点共线且,点在的中点处,,可求出.【详解】解:,是等腰直角三角形,作点关于的对称点,则在直线上,连接,如图:.,即,此时、、三点共线且,点在的中点处,,.故答案为:.三、解答题:本题共13小题,共81分。14.计算:(2+)(2﹣)【答案】1【分析】先利用平方差公式展开得到原式=22﹣,再利用二次根式的性质化简,然后进行减法运算.【详解】解:原式=22﹣=4﹣3=1.15.化简:【答案】【分析】直接根据分式的混合计算法则求解即可.【详解】解:.16.解不等式组:.【答案】x2【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式3x﹣1x+1,得:x1,解不等式x+44x﹣2,得:x2,∴不等式组的解集为x2.17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】要满足条件:在BC边上求作一点P,使得点P到AC的距离等于BP的长,则DP为∠BDC的角平分线.【答案】解:如图所示,点P即为所求.18.(2023·四川乐山·统考中考真题)如图,AB、CD相交于点O,AO=BO,AC∥DB.求证:AC=BD.【答案】见解析【分析】要证明AC=BD,只要证明△AOC≌△BOD,根据AC//DB可得∠A=∠B,∠C=∠D,又知AO=BO,则可得到△AOC≌△BOD,从而求得结论.【详解】(方法一)∵AC//DB,∴∠A=∠B,∠C=∠D.在△AOC与△BOD中∵∠A=∠B,∠C=∠D,AO=BO,∴△AOC≌△BOD.∴AC=BD.(方法二)∵AC//DB,∴∠A=∠B.在△AOC与△BOD中,∵,∴△AOC≌△BOD.∴AC=BD.19.不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.(1)从袋子中随机摸出1个球,放回并摇匀,再随机摸出1个球.求两次摸出的球都是红球的概率.(2)从袋子中随机摸出1个球,如果是红球,不放回再随机换出1个球;如果是白球,放回并摇匀,再随机摸出1个球.两次摸出的球都是白球的概率是________.【答案】(1);(2).【分析】(1)根据题意画出树状图,然后由树状图得出所有等可能的结果数与两次摸出的球都是红球的结果数,再利用概率公式即可求得答案;(2)方法同(1),注意第一次摸到白球要放回,其余颜色球不放回.【详解】解:(1)画树状图得,∴共有9种等可能的结果数,两次摸出的球都是红球的结果数为4次,∴两次摸出的球都是红球的概率为:;(2)画树状图得,∴共有7种等可能的结果数,两次摸出的球都是白球的结果数为1次,∴两次摸出的球都是白球的概率为:;故答案为:20.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【答案】这种服装每件的标价是110元【分析】设这种服装每件的标价是x元,根据题意列出方程进行求解即可.【详解】解:设这种服装每件的标价是x元,根据题意,得,解得;答:这种服装每件的标价是110元.21.避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼顶部避雷针的长度(,,三点共线),在水平地面点测得,,点与大楼底部点的距离,求避雷针的长度.(结果精确到.参考数据:,,,,,)【答案】【分析】根据,然后根据即可得出答案.【详解】解:∵,∴,∵,,∴,即,解得:m,∵,∴,即,解得:m,∴m.22.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身(次),按照方案一所需费用为,(元),且;按照方案二所需费用为(元),且其函数图象如图所示.求和的值,并说明它们的实际意义;求打折前的每次健身费用和的值;八年级学生小华计划暑期前往该俱乐部健身次,应选择哪种方案所需费用更少?说明理由.【答案】(1)k1=15,b=30;k1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)打折前的每次健身费用为25元,k2=20;(3)方案一所需费用更少,理由见解析.【分析】(1)用待定系数法代入(0,30)和(10,180)两点计算即可求得和的值,再根据函数表示的实际意义说明即可;(2)设打折前的每次健身费用为a元,根据(1)中算出的为打六折之后的费用可算得打折前的每次健身费用,再算出打八折之后的费用,即可得到的值;(3)写出两个函数关系式,分别代入x=8计算,并比较大小即可求解.【详解】解:(1)由图象可得:经过(0,30)和(10,180)两点,代入函数关系式可得:,解得:,即k1=15,b=30,k1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)设打折前的每次健身费用为a元,由题意得:0.6a=15,解得:a=25,即打折前的每次健身费用为25元,k2表示每次健身按八折优惠的费用,故k2=25×0.8=20;(3)由(1)(2)得:,,当小华健身次即x=8时,,,∵150<160,∴方案一所需费用更少,答:方案一所需费用更少.23.某合作社为帮助农民增收致富,利用网络平台销售当地的一种农副产品.为了解该农副产品在一个季度内每天的销售额,从中随机抽取了20天的销售额(单位:万元)作为样本,数据如下:16,14,13,17,15,14,16,17,14,14,15,14,15,15,14,16,12,13,13,16(1)根据上述样本数据,补全条形统计图;(2)上述样本数据的众数是_____,中位数是_____;(3)根据样本数据,估计这种农副产品在该季度内平均每天的销售额.【答案】(1)见解析;(2)14万元,14.5万元;(3)14.65万元【分析】(1)分别找出数据“14”和“16”的频数即可补全条形统计图;(2)根据众数和中位数的定义进行解答即可;(3)根据加权平均数的计算方法求出样本平均数,再估计这种农副产品在该季度内平均每天的销售额即可.【详解】解:(1)根据所给的20个数据得出:销售额是14万元的有6天;销售额是16万元的有4天;补全条形统计图如下:(2)在数据:16,14,13,17,15,14,16,17,14,14,15,14,15,15,14,16,12,13,13,16中,销售额是14万元的最多,有6天,故众数是14万元;将数据按大小顺序排列,第10,11个数据分别是14万元和15万元,所以,中位数是:(万元);故答案为:14万元,14.5万元;(3)20天的销售额的平均值为:(万元)所以,可以估计这种农副产品在该季度内平均每天的销售额为14.65万元.24.如图,是的直径,点E、F在上,且,连接、,过点作的切线,分别与、的延长线交于点C、D.(1)求证:;(2)若,,求线段的长.【答案】(1)见解析;(2)【分析】(1)取的中点M,连接、,由题意易得,则有,然后问题可求证;(2)连接,由题意易得,由(1)知,则有,然后由相似三角形的性质可得,则,进而可得,最后问题可求解.【详解】(1)证明:如图,取的中点M,连接、,∵,∴,∴,∵,∴;(2)解:连接,∵是的切线,∴,由(1)知,∴,∴,∵,,∴.∴,∵是的直径,∴.∵,∴.∴,∴.25.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,其中,.
(1)求该抛物线的表达式;(2)点是直线下方抛物线上一动点,过点作于点,求的最大值及此时点的坐标;(3)在(2)的条件下,将该抛物线向右平移个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上任意一点.写出所有使得以为腰的是等腰三角形的点的坐标,并把求其中一个点的坐标的过程写出来.【答案】(1);(2)取得最大值为,;(3)点的坐标为或或【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线的解析式为,过点作轴于点,交于点,设,则,则,进而根据二次函数的性质即可求解;(3)根据平移的性质得出,对称轴为直线,点向右平移5个单位得到,,勾股定理分别表示出,进而分类讨论即可求解.【详解】(1)解:将点,.代入得,解得:,∴抛物线解析式为:,(2)∵与轴交于点,,当时,解得:,∴,∵.设直线的解析式为,∴解得:∴直线的解析式为,如图所示,过点作轴于点,交于点,
设,则,∴,∵,,∴,∵,∴,∴,∴,∴当时,取得最大值为,,∴;(3)∵抛物线将该抛物线向右平移个单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新型装饰材料研发-洞察分析
- 勤俭节约护家园国旗下讲话稿范文(5篇)
- 虚拟现实与仿真技术-洞察分析
- 值班打瞌睡检讨书范文(10篇)
- 《曲面和曲线的构建》课件
- 财务流程标准化的个人工作策略计划
- 以案例为基础的学生解决问题能力培养
- 以人为本的办公绿植设计与实践
- 创新教学策略在小学科学课堂的应用
- 创新视角下的理论宣讲在学术界的实践
- 蔬菜产品供货合同范例
- 品管圈PDCA获奖案例-心内科降低心肌梗死患者便秘发生率医院品质管理成果汇报
- 2023年初级会计师《初级会计实务》真题及答案
- 江南大学《人工智能》2022-2023学年第一学期期末试卷
- 初中物理教师个人校本研修工作计划(20篇)
- 2024-2025学年三年级上册道德与法治统编版期末测试卷 (有答案)
- 2025蛇年学校元旦联欢晚会模板
- 广东省潮州市潮安区2023-2024学年八年级上学期期末考试英语试题-A4
- 2024年度租赁期满退房检查清单:租户与房东的交接确认单
- 种子生产与经营基础知识单选题100道及答案解析
- 江苏省扬州市2023-2024学年高一上学期1月期末考试 物理 含解析
评论
0/150
提交评论