Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 11 State of Stress and Theories of Strength_第1页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 11 State of Stress and Theories of Strength_第2页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 11 State of Stress and Theories of Strength_第3页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 11 State of Stress and Theories of Strength_第4页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 11 State of Stress and Theories of Strength_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

StaticsStaticsofdeformablebodyChapter11

StateofStressandTheoriesofStrength11.1Stateofstress11.2Analysisofplanestress11.3Mohr’scircleforplanestress11.4Triaxialstressstate11.5GeneralizedHooke'slawandvolumetricstrain11.6Strainenergydensityoftriaxialstress 11.7TheoriesofstrengthContents1.ThestateofstressofapointThestateofstressofapointinvariousorientationsiscalledthestressstate.

Thestudyofthestressstateatonepointiscalledstressanalysis.Thepurposeofthestressanalysisistodeterminethemostdangerouspositionanddirectionofthemember,andtoprovideabasisforanalyzingthestrengthofthemember.11.1Stateofstress2.originalelement,principalelementInordertostudythestressstateatapoint,anelement(infinitesimalnormalhexahedron)canbetakenoutaroundthepoint.2.Thestressconditionsontwomutuallyparallelsidesarethesame3.Itrepresentsthestressesinthreemutuallyperpendiculardirectionsatthecorrespondingpoint1.Thestressdistributiononeachsideoftheelementisuniform.characteristicsAnelementwherethestressesonallthreemutuallyperpendicularsurfacesareknownquantitiesiscalledaoriginalelement.AsshowninFig.(a).Thenormalstressesontheleftandrightsidesoftheelement()areknowntobeσx=P/Aandthereisnoshearstress.Thestressontherestofthefacesiszero.So,theelementistheoriginalelementofpointA.APPaxsxsA(a)(a)a=0°xsxsAA2xsmaxta=45°2xsTheelementwitharoundpointAinFigure(b)isalsotheoriginalelement.AeMAA(b)ta=45°maxs=tmins=-ta=0°Ingeneral,therearethreestressesoneachfaceoftheoriginalelement:anormalstressandtwoshearstresses.Theelementthathavenoshearstressonallsidesandonlynormalstress(Includingthecasewherethenormalstressis0)iscalledtheprincipalelement.Itcanbeprovedthataroundanypointwithinthememberaprincipalelementcanbealwaysfound.Thenormalstressoneachfaceoftheprincipalelementiscalledtheprincipalstress.Theplaneofprincipalstressiscalledtheprincipalplane.Itcanalsobedefinedasfollows:theplanewheretheshearstressisequaltozeroiscalledtheprincipalplane,andthenormalstressintheprincipalplaneiscalledtheprincipalstress.3.ClassificationofstressstatesTherearethreepairsofprincipalstressesonthesixfacesoftheprincipalelementatonepoint,whichareusuallydenotedasσ1,σ2,σ3.Theiralgebraicmagnitudeisσ1≥σ2≥σ3.

Accordingtothenumberofprincipalstresses(notzero),thestressstatescanbeclassifiedintothreecategories.s1s3s21.UniaxialstressstateOnlyoneprincipalstressisnotzero.2.BiaxialstressstateTwoprincipalstressarenotzero.3.Triaxialstressstate

Allthreeprincipalstressesarenotzero.4.Exampleofcomplexstressstate

1.Biaxialstressstatethestressstateofaboilerorothercylindricalvessel()

mnmnl(a)nn(b)Calculationofaxialstress:thetotalpressureactingonthebottomofthecylinderatbothendsalongthecylinderaxisisThentheaxialstressismnABCDs¢s¢s¢¢s¢¢mnl(a)ps¢nn(b)3.TriaxialstressstateInaballbearing,thestressstateatthecontactpointbetweentheballandtheouterringisatriaxialstressstate.s1s3s2(a)(b)PFig.6-4Ontheplanewiththexaxisasthenormaldirection,thenormalstressisdenotedbyσx.Theshearstressisdenotedbyτxy,thesubscriptxofτxyindicatesthatthedirectionoftheshearstressisnormaltothexaxis,andthesubscriptyindicatesthatthedirectionoftheshearstressisparalleltotheyaxis.11.2AnalysisofplanestressyxxsxsysysxytxytyxtyxtThesignofthenormalstress:thetensilenormalstressandtheclockwiseshearstressarepositive.1、StressesontheinclinedsectionsyxxsxsysysxytxytyxtyxtyxysxsxytyxtabcdafenaanaeafysyxtxytxstasatfeasindAadA(a)(b)(c)(d)Accordingtotheequilibriumoftriangularprism,theequilibriumequationofthenormalndirectionandthetangenttdirectioncanbewrittenasaanaeafysyxtxytxstasatfeasindAadA(c)(d)Thesearetheequationsforcalculatingthestressesinanyinclinedsectionoftheelement.2、PrincipalstressandprincipalplaneConsidertheextremevalueofthenormalstressinobliquesection.Takingthederivativeoffollowingequationtoα,wegetwhen

,weobtain

thentherearetwovaluesthatsatisfytheaboveequation:

and,thenwecanget

.sothemaximumshearstressandminimumshearstress:

xoaminsmaxs3、Maximum(minimum)shearstressandcorrespondingplaneThesamemethodcanbeusedtodeterminethemaximumshearstressandminimumshearstressoftheelementandtherotationangleofthecorrespondingplane.differentiateThenweget

Fromaboveequation,twoanglesα1with90°differencecanalsobedetermined,Themaximumshearstressandtheminimumshearstressplanesareperpendiculartoeachother.solvefromaboveequationtofindsin2α1

andcos2α2,substituteintofollowingequation,themaximumshearstressandminimumshearstresscanbeobtainedas

Comparingfollowingtwoequationswecanseethat(e)Theplanewherethemaximumandminimumshearstressesarelocatedisatanangleof45°totheprincipalplane.fromandExample1

Theoriginalelementatapointisshowninfigure.Trytocalculate:theprincipalstressandtheprincipalplaneorientation;themaximumandminimumshearstresses,andtheorientationoftheplanesinwhichtheyarelocated.solutionfrompicturewecanget

(1)Lettheangleoftheprincipalplanebeα0,then(a)x100MPa40MPa20MPaor(b)22.5°(a)x(b)116.6MPa22.5°3.4MPaTheprincipalstressintheprincipalplaneatangleα0=-22.5∘(clockwisedirection)withthex-axisisσmax,whiletheprincipalstressontheplaneofα0=-122.5∘isσmin.ThemaximumandminimumnormalstressesareTherefore,theprincipalstressis100MPa40MPa20MPa(2)

Theangleoftheplanewherethemaximumshearstressislocatedis

themaximumandminimumshearstressesarecorrespondingnormalstressis(a)(c)xx22.5°100MPa40MPa20MPa56.6MPa60MPaExample2

Abeamundertransverse-forcebendingisshowninFig.(a).AfterfindingthebendingmomentMandshearforceFQinthecrosssectionm-n,thenormalandshearstressesatapointAofthecrosssectionareσ=-70MPaandτ=50MPa,respectively.TrytodeterminetheprincipalstressatpointAandtheorientationoftheprincipalplane,anddiscussthestressstateatotherpointsonthesamesection.alm(a)Amnst(b)nsolution:TheelementofpointAisenlargedandshowninFig.(c)Accordingtosetverticalupwardasthepositivedirectionofx-axis,wegetx1s3s(c)70MPaxyt27.5°or50MPaThereforethestressintheα0=27.5°planeisσmax,whilethestressintheα0=117.5°planeisσmin,themaximumandminimumnormalstressesare:theprincipalstressisx1s3s(c)xyt27.5°70MPa50MPa1.Mohr’scircle1.Mohr'scircleequation

11.3Mohr’scircleforplanestressSquaretheleftandrightsidesoftheabovetwoequations,andthenaddthetwoequationstogethertogetThiscircleiscalledtheStresscircle,orMohr’scircle.

Equation(a)iscalledtheMohr’scircleequation.(a)Center2.DrawMohr’scircle0aBCADyxtxytosyxxytysyxxytys3.ProcessofproofThecenterCofthiscircleisontheσaxisandithorizontalcoordinateisBCADxytxytosradius2.ApplicationofMohr’scircle1.determinethestressinanyinclinedsectionofanelement.yxxytnaatasys(a)AsshowninFig.(a),lettheanglefromthexaxistothenormalnofanyinclinedsectionbethecounterclockwiseangleα.yxnaxaxytatasys(a)BCADxytxytosFSothecoordinatesofthepointEare:(b)oBCAFDE1G1A1BD¢2Gs2sysxs1s2a02axytyxttTheresultisexactlythesameastheresultcalculatedbyequation.(b)oBCAFDE11A1BD¢2Gs2sysxs1s2a02axytyxttG2.determinetheprincipalstressandthelocationoftheprincipalplaneA1andB1onthestresscirclehavemaximumandminimumtransversecoordinates,respectively.Sincetheverticalcoordinatesofbothpointsarezero,thetransversecoordinatesofthesetwopointsaretheprincipalstressintheprincipalplane.(b)oBCAFDE11A1BD¢2Gs2sysxs1s2a02axytyxttG3.determinethemaximumshearstressandcorrespondingplaneMakeaverticalradius,theverticalcoordinatesofthepointsG1andG2arethemaximumandminimumshearstressesrespectively.SowehaveBecausetheabsolutevaluesofτmaxandτminareequaltotheradiusoftheMohr’scircle,wecanget(b)oBCAFDE11A1BD¢2Gs2sysxs1s2a02axytyxttGExample4IntheoriginalelementshowninFig.(a),ithavetheσx=80MPa,σy=-40MPaandτxy=-60MPa.TrytofindtheprincipalstressesandthelocationoftheprincipalplaneusingtheMohr’scirclemethod.solution:yx0a1s3sC1B1AD¢02aD1s3s0204060a80MPscale(a)(b)a60MPa40MPa80MPostAttheselectedscale:

C1Bo1AD¢02aDst1s3s(b)Example5Analyzenormalstressσαandtheshearstressτα

insectiondeusingtheMohr’scirclemethod.

solution:Selectaappropriatescale010515a20MPa40MPyedxasat60°120°cBEtosas(a)(b)atWecanget

010515a20MPa40MPyedxasat60°120°tocBEsas(a)(b)atExample

6:Intwoplanespassingthroughapoint,thestressesareshowninthefollowingFigure(stressesinMPa).Trytofindtheprincipalstressandtheprincipalplane(expressedinelements).150°4595Solvingtheaboveequationtogethergives150°459575°105°then:

150°4595yx0a1s

11.4Triaxialstressstate

bdac1s2s3s3s(b)1B1A1Cost1s3s2sD1G2s1s3s(a)abcdThepointsrepresentingthestressesinanycrosssectionoftheelementintheσoτcartesiancoordinatesystemmustlieonthecircumferenceofthethreestresscirclesandwithintheshadedareaenclosedbythem.st

Itcanbeseenthatthemaximumandminimumnormalstressesinthetriaxialstressstatearethemaximumandminimumprincipalstresses,respectively,

(6-10)

(6-11)the

maximumshearstressshouldbe

(6-12)

withinthe45°sectionformedbyand.01BD1A1C1Gst1s3s2sExample7

Apointisinatriaxialstressstate,anditselementisshowninthefigurebelow.Finditsprincipalstressandmaximumshearstress.solution:Oneprincipalplaneandtheprincipalstressonthatfaceareknown.Theothertwoprincipalstressescanbefoundinasimilarwaytobiaxialstressstate.a20MPAs=a60CMPs=a40MPt=AtBC(a)a40MPt=a20MP(b)t1s2s3ss(60,0)Co(c)TaketwopointsA(-20,40),B(0,-40)intheσoτcartesiancoordinatesystem.WithABasthediameteroftheMohr’scircle,thetwointersectionpointsoftheMohr’scircleontheσaxisaretheothertwoprincipalstresses,whichare31MPaand-51MPa,respectivelya20MPAs=a60CMPs=a40MPt=AtBC(a)A(-20,40)(0,-40)Ba40MPt=a20MP(b)Sincetheprincipalstressis60Mpa,andaccordingto,wehaveThenmaketwootherMohr’scircles.ThemaximumshearstressisontheMohr’scircleofthelargestdiameter,wegeta20MPAs=a60CMPs=a40MPt=AtBC(a)a40MPt=a20MP(b)t1s3ss(60,0)Co(c)A(-20,40)(0,-40)B2smaxt11.5GeneralizedHooke'slawandvolumetricstrain

1.GeneralizedHooke'slawinitsgeneralformInuniaxialtensileorcompressivedeformation,therelationshipbetweenstressandstraininthelinearelasticrangeis

or(a)Thisisthetension(pressure)Hooke'slaw.Transversestrainε'canbeexpressedas(b)TherelationshipbetweenshearstressandshearstrainobeysHooke'slawinshearwhentheshearstressdoesnotexceedtheshearproportionallimit

(c)Thenormalstrainatapointforanisotropicmaterialisonlyrelatedtothenormalstressatthatpoint,butnottotheshearstress.Atthesametime,theshearstrainatthatpointisonlyrelatedtotheshearstress.Thesetwotypesofrelationshipsareinvestigatedseparately.yxzysxszsoxytxztxztyxtyztstresstensorFirstdiscusstherelationshipbetweenthenormalstrainεxinthex-directionandthenormalstressσx,σy

andσz.Thenormalstraininthex-directioncausedbyσxaloneisThenormalstrainscausedbyσyandσz

inthex-directionareyxzysxszsoxytxytxztxztyxtyzt

Thenormalstraininthex-directioncanbeobtainedbysummingtheabove3equations

(d)Similarly,wecangetthenormalstraininyandzdirection.Finally,weget

Hooke'slawinshear:ThisisthegeneralizedHooke'slawinitsgeneralform.andWhenallfacesoftheelementareintheprincipalplane,Letthex、yandzaxisdirectionbethesameasσ1,σ2,σ3direction.Then

thegeneralizedHooke'slawbecomes1s2s3sabcwhichisthegeneralizedHooke'slawexpressedintermsofprincipalstresses.2、SimplificationoftheplanarcaseIntheplanestress,substitutingσz=τyz=τzx=0intoequation(11-29)andequation(11-30),thenon-zerostraincomponentisobtained.Usingstraintoexpressstress,aboveequationbecomeswhichareHooke'slawfortheplanestressstate.3.Volumetricstrain

AsshowninFig.11-17,letthelengthsofthethreeedgesofa、b

andcbeforedeformationbedx、dyanddz,thenthevolumeoftheelementis

Ifthenormalstrainsofthethreeprismaticedgesofa、b

andcafterdeformationareε1、ε2

andε3,thevolumeoftheelementbecomesExpandingtheaboveequationandnotingthatthehigher-orderdifferentialisnegligibleinthecaseofsmalldeformations,wehave

Therefore,thechangeperunitvolumeis

Substitutingequation(11-31)intotheaboveequation,weget

symbols:thebulkmodulusofelasticity

theaverageprincipalstressThenweobtaintheequationforthevolumeHooke'slaw:

11.6Strainenergydensityoftriaxialstress1.Strainenergydensity

Inuniaxialtensionorcompression,thestrainenergyisnumericallyequaltotheworkdonebytheexternalforce.ByusingtheHooke'slaw,theformulaofelasticstrainenergyis(a)

Inthecomplexstressstate,thestrainenergyoftheobjectisstillnumericallyequaltotheworkdonebytheexternalforce.Inthelinearelasticcase,therelationshipbetweeneachprincipalstressanditscorrespondingprincipalstrainisstilllinear.Thestrainenergydensitycorrespondingtoeachprincipalstresscanbecalculatedaccordingtoequation(a).ThestrainenergydensityinthetriaxialstressstateiscalculatedasSubstitutingintotheaboveequation,weget(b)2、Volumechangeenergydensityanddistortionenergydensity

Theprincipalstrainscorrespondingtoσ1、σ2

andσ3

areε1、ε2、ε3.AndthevolumestrainisΘ.Thedeformationenergydensityucanbeconsideredasconsistingoftwocomponents:

(1)Thestrainenergydensityutstoredduetovolumechangeiscalledvolumechangeenergydensity.Volumechangemeansthateachedgeoftheelementisdeformedequally,andtheoriginalshapeismaintainedafterthedeformation,butthevolumechanges.(2)Thestrainenergydensitystoredwhenthevolumeremainsthesamebuttheshapeoftheelementischangediscalleddistortionenergydensity.

Ifthethreeprincipalstressesarereplacedbytheaveragestress,thevolumestrainatthistimeisequaltothevolumestrainΘoftheoriginalelement.Thus,thestrainenergydensityofthiscaseisequaltout

oftheoriginalelement,so

(d)BytheHooke'slawSubstitutingitintoequation(d),weget

(e)SubstituteIntoequation(c),wegetsimplify

Example8

Thepicturebelowshowsanelementinapureshearstressstatewithisotropicmaterial.TrytoprovethatthefollowingrelationshipexistsbetweenthethreematerialconstantsE,Gandμ.cabxyodtSolution:Letthelengthofeachsideoftheelementbedx,dyandt.Theshearforceoftheleftandrightfacesoftheelementareτtdy.Themisalignmentoftheleftandrightsidesoftheelementduetoshearisγdx.ThestoredstrainenergydUis(a)DividetheaboveequationbythevolumetdxdytoobtainthestrainenergyTheprincipalstressesontheelementinthepureshearstressstateareTheprincipalelementisalsoshowninrightfigure.cabxyodt45°1s3s(b)(c’)substitute

intotheequationbelowthenweget

(d)because,wehave(e)so11.7Theoriesofstrength1.Formsofmaterialfailure

(1)Plasticyielding(plasticflow)

Mildsteel

(2)BrittlefractureCastiron2、Theoriesofstrength

Strengthconditionsinaxialtensionorcompression

Theallowablestress[σ]isobtainedbydividingσbbythefactorofsafety.

Inengineering,mostofthedangerouspointsofthemembersareinthecomplexstressstate.Itisbelievedthatnomatterwhatstressstate,aslongasthesameformoffailureoccurs,thecausesoffailureandthefactorsleadingtofailurearethesame.Inthisway,itispossibletousetheresultsofsimpleexperimentstopredictthefailurebehaviorofmaterialsundervariousstressesandtoestablishfailurecriteria.Suchhypothesisiscalledthetheoriesofstrength.3、FourcommonlyusedstrengththeoriesSincetherearetwoformsofmaterialdamage,strengththeoriesarealsodividedintotwocategories:Oneistoexplainthebrittlefractureofmaterials;Theotheristoexplaintheplasticyielddamageofmaterials.1.Maximumtensilestresscriterion(firsttheoryofstrength)Themaximumtensilestressσ1isthemainfactorcausingthebrittlefractureofthematerial.Whetheritisauniaxialstressstateoracomplexstressstate,thematerialwillfractureifthemaximumtensilestressσ1

reachesalimitvalue.Thislimitisthestrengthlimitσbofthematerialmeasuredduringtheaxialtensiletest.fracturecriterion:strengthcondition:Thistheorybasicallyreflectscorrectlythepropertiesofsomebrittlematerials.Itcanbeusedforcertainbrittlemetalssubjectedtotensilestresses,suchascastiron.2.Maximumtensilestraincriterion(secondtheoryofstrength)

Thistheorybelievesthatthemaximumelongationnormalstrainisthemainfactorcausingbrittlefractureofthematerial.Whetheritisauniaxialstressstateoracomplexstressstate,thematerialwillfractureiftheelongationnormalstrainε1reachesthemaximumelongationnormalstrainε0.

Inthecaseofanaxiallystretchedmaterial,itisassumedthattheultimatenormalstrainofthematerialcanstillbecalculatedbyHooke'slawuntilfractureoccurs,Incomplexstressstates,fracturedamageoccurswhenthemaximumelongationlinestrainε1reachesε0.Theconditionsunderwhichfracturedamagethusoccursare(b)BythegeneralizedHook'slawthereis

Substitutingitintoequation(b),thefracturecriterionofthematerialcanbeobtainedas(c)Divideσbbythefactorofsafetytoobtaintheallowablestress[σ]andthestrengthconditionestablishedbythesecondtheoryofstrengthis

Whenbrittlematerialssuchasstoneorconcretearemainlysubjectedtocompressivestress,thistheoryisbasicallyconsistentwiththeexperimentalresults.Thistheoryisonlyconsistentwiththedamagelawofafewbrittlematerialsinsomecases,andcannotbeusedtodescribethegeneraldamagelawofbrittlematerials.3.Maximumshearstresstheory(thirdtheoryofstrength)Thistheorybelievesthatthemaximumshearstressτisthemainfactorcausingplasticyieldingdamageofthematerial.Whetheritisauniaxialstressstateoracomplexstressstate,thematerialwillundergoplasticyieldingdamageifthemaximumshearstressτmaxreachesthelimitvalueτ0

ofthematerial.

Inthecaseofaxialtension,whenthetensilestressinthecrosssectionreachestheyieldstressσsofthematerial,themaximumshearstressoccursintheinclinedsectionatanangleof45°totheaxisisTheplasticyieldcriterionis

(d)Inthecomplexstressstate,themaximumshearstressis

Thustheplasticyieldcriterioncorrespondingtothethirdtheoriesofstrengthis

ThisisalsoknownastheyieldingcriterionofTresca.σisdividedbythefactorofsafetytoobtaintheallowablestress[σ].Thestrengthconditionestablishedbythethirdtheoriesofstrengthis

orThistheorycanbetterexplainthephenomenonofplasticyieldinginplasticmaterials.Theshortcomingofthistheoryisthatitdoesnottakeintoaccounttheprincipalstressσ2(orrather,theeffectofotherprincipalshearstresses)andisonlyapplicabletomaterialswiththesametensileandcompressiveyieldstress.4.Maximumdistortionene

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论