版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StaticsStaticsofdeformablebodyChapter7
AxialTensionandCompressionContents7.1Introductionofaxialtensionandcompression 7.2Internalforcesinaxialtensionorcompression7.3Stressinaxialtensionorcompression7.4Elasticdeformationinaxialtensionorcompression7.5Mechanicalpropertiesofmaterialsintensionandcompression7.6StrengthcalculationAxialtension,correspondingtoanexternalforcecalledtension,isappliedtotheaxialtensionbars.Axialcompression,correspondingtoanexternalforcecalledpressure,isappliedtotheaxialcompressionbars.7.1axialtensionandcompression7.2Internalforcesinaxialtensionorcompression
Asshowninthefigure,theinternalforcesontherodcrosssectionm-maredeterminedbythesectionmethod.Cuttherodalongthecrosssectionm-musinganimaginaryplaneAccordingtotheequilibrium,TheforceFNisshowninthefigure.mmFN{mmFN}FFTheinternalforcesinteractingbetweentheleftandrightsectionsofthebarincrosssectionm-mareadistributedforcessystem.FN}mmFmmF{FNLetcombinedforcebeFN.Accordingtotheequilibriumcondition,wecanget
(7-1)FNcoincideswiththeaxisandiscalledtheaxialforce.
Itisgenerallyspecifiedthattheaxialforceintensionispositiveandincompressionisnegative.(Thecalculationisusuallydonebyfirstsettingtheinternalforcetobepositive)7.2Internalforcesinaxialtensionorcompression
x-axis---paralleltotherodaxis,indicatingthepositionofthecrosssectionoftherod.
FN-axis---perpendiculartotherodaxis,indicatingthemagnitudeoftheaxialforce.FNFx
Plotalinerepresentingtherelationshipbetweentheaxialforceandthepositionofthesectionattheselectedscale——axialforcediagram.FFMeaningofaxialforcediagram:①Itreflectstherelationshipbetweenthevariationoftheaxialforceandthepositionofthecross-section,whichismoreintuitive;②Itreflectsthevalueofthemaximumaxialforceandthelocationofthesurfacewhereitislocated,i.e.thelocationofthedangeroussection,whichprovidesthebasisforstrengthcalculation.PositiveaxialforceTheaxialforcethatcausesthemicro-elementsegmenttohaveatendencytoelongateispositive.NegativeaxialforceExample:Therodissubjectedtotheforcesshowninfigure(a),trytodrawtheaxialforcediagram.(b)Solution:(1)CalculatetheaxialforceofeachsectionoftherodSectionAB:Theaxialforceisassumedtobethetensileforce,expressedin
.Thenweget
(Thenegativesignindicatesthattheaxialforceispressure)(a)F2FBCDABFNFAFNABSimilarly:theaxialforcesofBCandCDsectionsareobtainedasfollowsFF2FABCDFFABFF2FABC(a)(d)(c)FNBCFNCD
(2)
Theaxialforcediagramisshowninfigure(e)FNxF(e)2FFF2FABCD1.TakethepartwithlessnumberofexternalforcesastheobjectofstudyWhencalculating2.Theaxialforcediagrammustbedrawntogetherwiththedrawingoftheoriginalcomponent.Thevaluesoftheaxialforcesandthe"+"and"-"signsmustbeclearlymarked.3.Intheaxialforcediagram,startingandendingatzero,thesuddenchangeinvalue=concentratedload
Example7-1TheforceonastraightrodofequalsectionisshowninFigurea,F1=120kN,F2=90kN,F3=60kN,Thytodrawtheaxialforcediagram.3F1F2FABCD(a)1m3FFR1F2FABCDIIIIIIIIIIII(b)solution
(1)SolveforthesupportreactionforceLetthesupportreactionforcebeRasinfigure(b).Accordingtoequilibriumconditionofthewholerod,weget2m1.5m
(2)Calculatetheaxialforceofeachsectionoftherod
SectionAB:AhypotheticalplaneisusedtotruncatetherodinsectionABandtheleftsectionistakenastheobjectofstudy(Figurec).Assumethattheaxialforceisthetensileforce,denotedby.Fromtheequilibriumcondition,wehaveAII(c)AII(c)IIIIIIIIII3F1F2F1FABIIIIFRFN2FN33FIIIIII(e)(d)Similarly,weget:theaxialforcesinthesectionBC(Figured)andsectionCD(Figuree):
Example7-1TheforceonastraightrodofequalsectionisshowninFigurea,F1=120kN,F2=90kN,F3=60kN,Thytodrawtheaxialforcediagram.(3)DrawaxialforcediagramTheaxialforcediagramisshowninFiguref.Asseenfromtheaxialforcediagram,thevalueoftheaxialforceinsectionABisthelargest,FNmax=FN1=120kN。Axialforcesareinternalforces,whicharerelatedtoexternalforces,butdifferentfromthem.3F1F2FABCD(a)FN/kNx(f)60907.3Stressinaxialtensionorcompression1.normalstressformula:
ThespecificrelationshipbetweenσandFNcannotbedeterminedfromtheabovestaticrelationshipequationalone.Nowwestartfromstudyingthedeformationoftherodtoseekthevariationlawofσ.Asshownintherightfigure:BeforedeformationAfterdeformationThefollowingphenomenacanbeobservedafterdeformation:(1)Therodiselongated.However,eachtransverselineremainsstraight,andanytwoadjacenttransverselinesaremovedparalleltoeachotheralongtheaxisbyadistance;(2)Afterdeformation,thetransverselinesarestillperpendiculartotheaxis.Fromtheaboveobservation,Theplanesectionhypothesisforroddeformationcanbeobtained.
Thecross-sectionofthebarremainsflatandalwaysperpendiculartotheaxisduringtensionandcompression(geometricrelationship).planesectionhypothesisStressisequalatallpointsonthecrosssectionPhysicalrelationship
Thestresses(i.e.,positivestressesσ)areequalatallpointsofthecrosssectionontheisotropicrod,sowehaveThereforethenormalstressinthecrosssectionofthetension(compression)rodis
ThesignofσisspecifiedasthesameasFN.Thetensilestressispositiveandthecompressivestressisnegative.Thederivationprocessoftheabovepositivestressequationisbasedonthethreelawsofdeformationgeometry,physicsandstaticequilibrium.
AnalyticalmethodsofmaterialmechanicsSynthesisofthreetypesofanalysisGeometricanalysisMechanicalAnalysisPhysicalAnalysis1.MechanicalAnalysisStudyoftherelationshipbetweenthevariousmechanicalelements(includingexternalandinternalforces;forcesandmoments)inamember.2.PhysicalAnalysisstudyofthemechanicalpropertiesofmaterialsandtherelationshipbetweenthemechanical(andsometimesthethermal)andgeometricelementsofamember.Studyoftherelationshipbetweenthevariousgeometricelementsinmembersandstructures.Relationshipbetweenstrainanddeformationinamember.Therelationshipbetweenthedeformationofeachmemberinthestructure.3.GeometricAnalysis2.Thepremiseofusingthepositivestressformula1.Thelineofactionofthecombinedexternalforcesmustcoincidewiththeaxisoftherod.2.Therodmustbeanstraightrodwithequalsection.Ifthecross-sectionaldimensionschangealongtheaxis,forslowlychangingrods:
3.Theformulaiscorrectonlyatacertaindistancefromthepointofactionoftheexternalforce.Example7-2ThearticulatedbracketisshowninfollowingFigure.ABisarodofcircularsectionwithdiameterd=16mmandBCisarodofsquaresectionwithsidelengtha=14mm.iftheloadF=15kN,trytocalculatethestressinthecrosssectionofeachrod.ACBFSolution(1)CalculatetheaxialforceofeachrodThenodeBisinterceptedbythesectionmethod.Theaxialforceofeachrodisassumedtobeintension.Fromtheequilibriumequation,weget
BFFNABFNBCACBFSolution(2)Calculatethestressofeachrod.
Example7-2ThearticulatedbracketisshowninfollowingFigure.ABisarodofcircularsectionwithdiameterd=16mmandBCisarodofsquaresectionwithsidelengtha=14mm.iftheloadF=15kN,trytocalculatethestressinthecrosssectionofeachrod.BFFNABFNBC1.AxialdeformationHooke'slaw
AnequalstraightbarisshowninFigure.Lettheoriginallengthoftherodbelandthecross-sectionalareabeA.UndertheactionofaxialtensionF,thelengthoftherodchangesfromltol1.7.4ElasticdeformationinaxialtensionorcompressionFFTotalelongationintheaxialdirection:
(a)FFExperimentshowedthat:adoptingaProportionalityfactorE,wecanget(b)Foranequalstraightrodsubjectedtoaxialexternalforcesonlyatbothends,SinceFN=F,equation(b)canberewrittenas
ispositivewhenthebarisintensionandnegativewhenthebarisincompression.Theaboveequationistheformulaforcalculatingtheaxialdeformationofanequalstraightrodinaxialtensionandcompression,referredtoasHooke'slaw.E---relatedtothenatureofthematerial,knownasthematerial'stensileandcompressivemodulusofelasticity,itsvaluecanbedeterminedbyexperiment.EA---reflectstheabilityoftherodtoresisttensile(compression)deformation,knownasthetensile(compression)rigidity.FFSubstitutingandintotheaboveequationWegetor
ThisisanotherexpressionofHooke'slaw.Hooke'slawcanalsobeexpressedasfollows:whenthestressdoesnotexceedacertainlimitvalue,thestressisproportionaltothestrain.Becausethestrainεhasnodimension,themodulusofelasticityEhasthesamemeasureasthestress.Finally,itisnotedthattheformulacanbeappliedonlywhentheaxialforceFN,thecross-sectionalareaA,andthemodulusofelasticityEofthematerialareconstantsintherangeofrodlengthl.Forthesteppedbarsorthebarswhoseaxialforcevariesinsegments:
WhentheaxialforceFN(x)andthecross-sectionalareaA(x)varycontinuouslyalongtherodaxisx-direction,thereis
FF2.Poisson'sratio
Letthetransverselengthoftherodbeforedeformationbebandafterdeformationbeb1,thetransverselinestrainoftherodisExperimentshowedthat:Therelationshipbetweenthetransversestrainandtheaxial(longitudinal)strainεisBecausethesignsofε’
andε
areopposite,soµ---knownasPoisson'sratioortransversedeformationcoefficient,isadimensionlessquantitywhosevaluevarieswiththematerial.Eandµarebothelasticconstantsinherenttothematerialitself,andareparametersthatreflecttheelasticdeformationcapacityofthematerial.Example
1Asteppedsteelrodisshowninthefigure.Itisknownthatthecross-sectionalareaofsectionACisA1=500mm2,thecross-sectionalareaofsectionCDisA2=200mm2,andthemodulusofelasticityofthesteelrodE=200GPa.Trytofind:(1)theinternalforcesandstressesinthecross-sectionofeachsectionoftherod;(2)Thetotalelongationoftherod.BACDF1=30kNF2=10kN100100100Solution:(1)calculationinternalforces2F1FFN12FFN2
cutoffthebarsalongthesections1-1and2-2andcalculatetheaxialforce,weget:2F1F1122ABCDAxialforcediagram20+10_xFN/kNBACD(2)calculatestresses(3)totalelongationofthebarNegativeresultmeansthatthewholerodisshortened.Example2AsteelplateshowninthefigurehasamodulusofelasticityE=200GPaandaPoisson'sratioof0.25.Findthevariationofthicknessoftheplatewhenitissubjectedtoauniformloadof140kNatbothends.2501050140kN{}140kN2501050{}solution:Undertheactionoftheuniformloadatbothends,thesteelplateundergoesaxialtensiledeformation.Thenormalstressonitscrosssectioncanbecalculatedbytheformula:(a)FromHooke'slaw,weget
(b)140kN140kN2501050{}Thetransverselinestrainisso(c)140kN140kN2501050{}Substitutingequation(b)intoequation(c)andconsideringequation(a),weget
Thethicknessofthesteelplateisreducedby0.0035mm.140kN140kN3.Strainenergyinaxialtension
(compression)Theenergystoredinthelinearelasticbodyasaresultofdeformationiscalleddeformationenergyorstrainenergy.ElasticdeformationEnergyStorageWorkdonebyexternalforcesExternalforcedecreasesDecreaseindeformationReleaseenergyAsshowninthefigure,thelowerendofastraightrodissubjectedtoagraduallyincreasingaxialtensionfromzerotothefinalvalueF.Thedisplacementatthepointofactionalsograduallyincreasesto∆l,andthetensionFisproportionalto∆lintherangewherethestressislessthantheproportionallimit.FF(a)(b)F
Wisequaltotheareaofthetriangleinthediagram.Clearly,dWisequaltodifferentialareacoveredbytheshadedlineinthefigure.Ignoringtheenergyloss,accordingtotheprincipleoffunction,thedeformationenergyUstoredintheelasticbodyshouldbeequaltotheworkWdonebythepullingforceF
ConsideringtheaxialforceandHooke'slaw,wecangetTheunitofstrainenergyisthejoule(J),1Joule(J)=1N∙m.Strainenergyperunitvolumeisknownasthedeformationspecificenergyorstrainenergydensity(denotedasu).
ConsideringtheHooke'slaw,wecangetTheunitofstrainenergydensityisjoulespermetre3(J/m3).
7.5Mechanicalpropertiesofmaterialsintension(compression)
Mechanicalpropertiesofmaterials——thedeformation,damageandothercharacteristicsofmaterialsduringdeformationbyforces1.Experimentalconditions:materialatroom-temperature,thetensiletestandcompressiontestinaslowandsmoothloadingmode2.Experimentalobject:astandardspecimenofcircularcross-sectionintensionasshowninthefigure:FFllFF——gagelength——diameterTherearetworatiosbetweenthelandthedinthenationalstandard.
and3.F-ΔlcurveThespecimenissubjectedtoagraduallyincreasingtensileforceFfromzero,whilethevariation∆lofthelengthlcanbemeasuredTheverticalcoordinaterepresentsthetensileforceFandthehorizontalcoordinaterepresentstheelongation∆l.TheF-∆l
curveisplottedaccordingtoaseriesofdatameasuredfromthebeginningoftheexperimentuntilthespecimenispulledoff,andiscalledatensilediagram.1.MechanicalpropertiesoflowcarbonsteelintensionLow-carbonsteelisavarietyofcarbonsteelswithacarboncontentof0.25%orless,andiscommonlyusedtorevealsomeofthemechanicalpropertiesofplasticmaterials.ThefigurebelowshowstheF-Δlcurvewhenlow-carbonsteelisstretched,andthiscurveisalsocalledatensilediagram.efgF0abcdhThe
σ-ε
curveforlow-carbonsteelthroughoutthetensiletestcanbedividedintofourstagesasfollows.
hgbd0aec1.ElasticRange2.YieldingRange3.StrainHardening
Range4.NeckingRangefInitialrange——elasticrange(sectionob)Iftheloadisslowlyremoved(unload)atthisstage,thedeformationcandisappearcompletely.Thestresscorrespondingtopointbiscalledtheelasticlimitofthematerialandisexpressedasσe,i.e.,themaximumstressthatthematerialcanwithstandintheelasticdeformationphase.Inthisrange,alargesectionofthecurveisastraightline(sectionoa),indicatingthatthestress-strainrelationshipisproportionalandsatisfiesHooke'slawThestresscorrespondingtopointaiscalledtheproportionallimit(σp)
ofthematerial.
Itisthemaximumstressthatthematerialcanwithstandwhenthestress-strainisinthepositiveproportionalrelationship.Initialrange——elasticrange(sectionob)Theexternalforcefluctuatesinasmallrange,butthedeformationincreasessignificantly.i.e.Thematerialtemporarilylosesitsabilitytoresistdeformation,Thisphenomenoniscalledyieldingorflowofthematerial.
Atthisstageafterunloadingtheexternalforcetozerotheelasticwilldeformationdisappears,whilethereisstillapartofplasticdeformationisretainedpermanently.Sliplines(atanangleof45degreestothespecimenaxis)willappearonthespecimensurface.Thestresscorrespondingtothelowestpointoftheyieldingrangeiscalledtheyieldstressoryieldlimit(denotedasσs)(Usuallyregardedasanindicatorofthestrengthofthematerial)succumbThesecondrange——YieldingRange(sectionbc)SliplineAftertheyieldingrange,thematerialregainsitsabilitytoresistdeformation.Thisphenomenonisknownasstrainhardening.Thestresscorrespondingtothehighestpointeiscalledtheultimatestressandultimatestrength,expressedbyσb.TheultimatestressisthemaximumstressthatthematerialcanwithstandduringtheentiretensileprocessThethirdrange——StrainHardeningRangeWhenthestressreachestheultimatestrength,thereisasuddenandsharpreductioninthetransversedimension,formingtheneckingphenomenon.Thereafter,theaxialdeformationofthespecimenismainlyconcentratedattheneckshrinkage.Theloadontheneckalsodecreasesrapidly,andfinallythespecimenispulledoffattheneck.stresswhenthespecimenispulledoff.Thelastrange——NeckingRange(sectionef)Nec-kingPercentageelongationisthemainindexofmaterialplasticity(5%)(1)Percentageelongation:(2)percentagereductioninarea
A1
——Minimumcross-sectionalareaatthefractureofthespecimen
A
——originalcrosssectionarea
Zisalsoanindexofmaterialplasticity(1).PercentageelongationandpercentagereductioninArea(1)
Unloadinglaw:
duringtheprocessofunloading,thestressandstrainvaryinalinearrelationship.
Thetotalstraincorrespondingtoanypointdbeyondtheelasticrangecontainsbothelasticandplasticstrains.hgefOabcd(2).Unloadinglawandcoldhardening)(2)coldhardeningefhg0abcdIfunloadingisfollowedbyreloadingwithinashortperiodoftime,Itwillbeseenthatproportionallimitincreases,buttheplasticdeformationdecreases.ColdhardeningcanbeusedtoimprovethestrengthofmaterialinitselasticrangeForplasticmaterialswithnoapparentyieldrange,thenominalyieldstressσ0.2,i.e.thestresscorrespondingto0.2%oftheplasticstrain,isusedastheyieldstress.se0.2%(3).MechanicalpropertiesofotherplasticmaterialsintensionGreycastironisatypicalbrittlematerial.Thestressatfractureistheultimatestrengthandistheonlystrengthindicator.SometimeswechooseacutlinetodeterminethevalueofEandconsiderthatthematerialobeysHooke'slaw.12510075502500.150.300.452(MN/m)s(%)e2、Mechanicalpropertiesofcastironintension3、Mechanicalpropertiesofmaterialincompression(1)PlasticmaterialsYellowline-curveoflowcarbonsteelintensionGreenline-curveoflowcarbonsteelintensionFesss(2)BrittlematerialsAsshowninthefigure:thecurveofcastironincompression.Experimentsshowthat:Thecurvedoesnothavea"yieldpoint",thespecimenissuddenlydamagedunderasmalldeformation.Thedamagesurfaceisinclinedatanapproximateangleof45degreestotheaxis.FF600500(%)e2MN/m
s1100200300400423506
Proportionallimitelasticlimit
Yieldlimit
()Ultimatelimit
Modulusofelasticity
EPercentageelongationpercentagereductioninareaThemainindicatorsofthemechanicalpropertiesofvariousmaterials:——maximumstressallowedinthematerial.
——thestressthatcausesthematerialtobreakiscalledtheultimatestressor
damagestressn——thefactorn,whichisgreaterthan1,iscalledthefactorofsafety.PlasticmaterialsBrittlematerials7.6Strengthcalculation1、Factor
of
SafetyandAllowableStress
forequal-sectionrodstheaboveformulasarethestrengthconditionsofthebarinaxialtension(compression).Thesectionwherethemaximumworkingstressisgeneratediscalledthedangeroussection.2、ThestrengthconditionsUsingstrengthconditions,threeaspectsofstrengthcalculationsinengineeringcanbesolved:1.Strengthcheck2.SectiondesignTher
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏海事职业技术学院《茶叶审评与检验实验》2023-2024学年第一学期期末试卷
- 华南理工大学《金蝶云ERP供应链管理》2023-2024学年第一学期期末试卷
- 湖北交通职业技术学院《地质与地貌学》2023-2024学年第一学期期末试卷
- 遵义职业技术学院《工程软件与程序设计》2023-2024学年第一学期期末试卷
- 珠海艺术职业学院《建筑师业务基础与实践》2023-2024学年第一学期期末试卷
- 重庆青年职业技术学院《摄影报道》2023-2024学年第一学期期末试卷
- 浙江同济科技职业学院《舞台表演化妆与发型》2023-2024学年第一学期期末试卷
- 重庆安全技术职业学院《模拟电子技术实验B》2023-2024学年第一学期期末试卷
- 中南财经政法大学《融媒体与节目策划》2023-2024学年第一学期期末试卷
- 郑州亚欧交通职业学院《装配式建筑识图与实务》2023-2024学年第一学期期末试卷
- 中考英语688高频词大纲词频表
- GB/T 2315-2017电力金具标称破坏载荷系列及连接型式尺寸
- 标准工时基础知识及应用 课件
- 咽旁间隙肿瘤课件
- (完整版)中职数学习题及答案
- 高中语文 苏轼导读 课件
- 府谷县恒阳阳建材有限公司-15万立方米-年混凝土搅拌站项目报告书
- 水中钢管桩施工方案
- 上交所期权投资者综合试卷考试及答案
- 超市日常工作检查表
- 电缆热稳定校验计算书
评论
0/150
提交评论