![Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 10 Plane Bending_第1页](http://file4.renrendoc.com/view3/M01/3A/2A/wKhkFmaELt6AHvjKAABs15GQbnQ560.jpg)
![Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 10 Plane Bending_第2页](http://file4.renrendoc.com/view3/M01/3A/2A/wKhkFmaELt6AHvjKAABs15GQbnQ5602.jpg)
![Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 10 Plane Bending_第3页](http://file4.renrendoc.com/view3/M01/3A/2A/wKhkFmaELt6AHvjKAABs15GQbnQ5603.jpg)
![Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 10 Plane Bending_第4页](http://file4.renrendoc.com/view3/M01/3A/2A/wKhkFmaELt6AHvjKAABs15GQbnQ5604.jpg)
![Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 10 Plane Bending_第5页](http://file4.renrendoc.com/view3/M01/3A/2A/wKhkFmaELt6AHvjKAABs15GQbnQ5605.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StaticsStaticsofdeformablebodyChapter10
PlaneBending10.1Introduction 10.2Internalforceinbeams 10.3Shearforceandbendingmomentdiagrams 10.4Relationsamongshearforce,bendingmomentandloads 10.5Normalstressoncrosssectioninpurebending10.6Shearstressinbending 10.7Calculationofstrength 10.8Displacementandrigidityconditionofbeams10.9Deflectionofbeams
Contents10.1Introduction1.PlanebendingofbeamsBendingisabasicformofdeformationinengineeringpractice.examples:
FFDiagramofthecranecrossbeam(b)AxleSchematicdiagramoftheaxle:1F2FFFFFDiagramofthecranecrossbeam(b)AxleThecommonfeatureofthesemembersisthattheycanallbesimplifiedtoabar,whichintheplanepassingthroughtheaxisissubjectedtoanexternalforce(transverseforce)perpendiculartotheaxisofthebaroranexternalcouple.Thisformofdeformationiscalledbending.Inengineering,themembersofbendingdeformationareusuallycalledbeams.FFDiagramofthecranecrossbeam(b)AxleLongitudinalplaneofsymmetry——theplanepassingthroughtheaxisofthebeamandtheaxisofsymmetryofthesectionPlanebending
——theexternalloadonthebeamislocatedinthelongitudinalplaneofsymmetry,theaxisofthebeambendintoaplanecurvelocatedinthesameplane.ABFRAFRB1F2FAxisofsymmetryLongitudinalplaneofsymmetryAxisofthebeamafterdeformation2.SupportsandloadsTheexternalforcesactingonabeam,includingloadsandsupportreactions,canbesimplifiedtothefollowingthreetypes:(1)Concentratedforces;unit:Newton(N)(2)Distributedload;unit:Newton/meter(N/m)q—Distributedload—ConcentratedforceF(3)
Concentratedcouple;unit:Newton·meter(N·m)M—ConcentratedcoupleThewayinwhichthebeamsaresupportedcanbesimplifiedtothefollowingthreeforms:Fixedhingesupport:2constraints,1degreeoffreedom.Supports:Rollersupport:
1constraints,2degreeoffreedom.Fixedendsupport:3
constraints,0degreeoffreedom.Staticallydeterminatebeam
——thebearingreactionforcesofabeamcanbefullyderivedfromthestaticequilibriumequations.Superstaticbeam——thebearingreactionforcesofabeamcannotbe(orfully)derivedfromthestaticequilibriumequations.Thecommonstaticbeamsinengineeringpracticehavethefollowingthreeforms:(1)Simplysupportedbeam:
(2)Cantileverbeam:
(3)Overhangingbeam:Theportionofthebeambetweentwosupportsiscalledthespananditslengthiscalledthespanlengthorspanofthebeam.Commonly,staticbeamsaremostlysinglespan.10.2Internalforceinbeams1.SectionmethodforcalculatinginternalforcesinbeamsWhenallexternalforcesonthebeamareknown,thesectionmethodcanbeusedtodeterminetheinternalforcesinanycrosssectionofthebeam.ThesimplysupportedbeamABshowninFig.(a)isanalyzedforinternalforcesatcrosssectionm-matadistancexfromendA.yamAB2F1F3FxnnfindthesupportreactionforceRA,RB(2)findtheinternalforce–sectionmethod2F3FMFQMFQ1FmyaxOyaxmnnAB2F1F3FWherethepoint
O
isthecentroidofthesectionm-m(a)(b)AccordingtoWeget:similarlyyaxmnnAB2F1F3Fya1FmQMx02F3FMsimilarly:
andMofsectionm-mcanbeobtainedfromtherightbeamaccordingtoitsequilibriumconditions,whichareequalinmagnitudebutoppositeindirectiontothoseobtainedfromtheleftbeam.FQFQThesignsforshearforceandbendingmomentsarespecifiedasfollows:①shearforce:IftheshearforceFQtendstorotateclockwisearoundthemicro-section,itispositive.Intheoppositedirection,itisnegative.FQ(+)FQ(–)FQ(–)FQ(+)M(+)M(+)M(–)M(–)②
bendingmoment:IfthebendingmomentMcausesadownwardconvexdeformationofthemicro-section,thebendingmomentMispositive.Intheoppositedirection,itisnegative.MyaF1MeFQMxFRA0TheshearforceFQ
andthebendingmomentMinthiscrosssectionmustbeofequalmagnitudeandthesamesign.FQ(+)FQ(+)M(+)M(+)FRBFQF2F3(1)Theshearforceinacrosssectionisnumericallyequaltothealgebraicsumofalllateralforcesinthebeamtotheleft(orright)ofthesection.Anupwardforceontheleft-handbeam(oradownwardforceontheright-handbeam)producesapositiveshearforce;theoppositeproducesanegativeshearforce.leftupper,rightlowerFQ(+)FQ(+)yaF1MeFQMxFRA0MFRBFQF2F3(2)Thebendingmomentinasectionisnumericallyequaltothealgebraicsumofthemomentsofallexternalforcestotheleft(orright)ofthesectionwithrespecttothecentroidofthesection.1.Theclockwiseexternalforcecoupleattheleftendofthecross-sectionortheclockwiseexternalmomentgeneratedbytheexternalforceproducesapositivebendingmomentonthecross-section:leftclockwiseyaF1MeFQMxFRA0MFRBFQF2F32.Thecounterclockwiseexternalforcecoupleattherightendofthesectionorthecounterclockwiseexternalmomentgeneratedbytheexternalforceproducesapositivebendingmomentonthesection:rightcounterclockwiseyaF1MeFQMxFRA0MFRBFQF2F3
Example1Findtheinternalforcesinsections1-1and2-2showninfollowingpicture.ABq11222M=qacDCFDFaaaqasolution:(1)supportreactionforces(2)externalforcesSection1-1:Takingtheleftsegmentalbeamastheobjectofstudy,Section2-2:Takingtherightsegmentalbeamastheobjectofstudy,ABq11222M=qacDCFDFaaaqa10.3Shearforceandbendingmomentdiagrams1.ShearforceandbendingmomentequationsTheshearforceandbendingmomentineachcrosssectionofthebeamcanbeexpressedasafunctionofx,2.Shearforceandbendingmoment
diagramsThegraphsofFQ(x)andM(x)areplottedwithxasthehorizontalcoordinateandFQ
orMastheverticalcoordinate,respectively,whicharecalledshearforceandbendingmomentdiagrams.Inthisway,themaximumvaluesofshearforceandbendingmomentsinthebeamcanbedetermined,aswellasthelocationofthecorrespondingcrosssection.Example2ThecantileverbeamshowninFig.(a)issubjectedtoaconcentratedforceFatitsfreeend.Trytolisttheshearequationandbendingmomentequationofthebeamandmakeashearforcediagramandbendingmomentdiagram.AyBl(a)(b)(c)xxFQMFlx(2)Makeshearforceandbendingmomentdiagrams.xFsolution:(1)Findtheequationofshearandtheequationofbendingmoment.+-(a)(b)FAyBl(a)(b)(c)xxFQMFlxxF+-Eq.(a)showsthattheshearforceineachcrosssectionofthebeamisthesameF.Theresultingshearforcediagramisastraightlinelocatedontheuppersideofthexaxisandparalleltothexaxis
.Fromequation(b)weknowthatthebendingmomentisalinearfunctionofx,andthereforethebendingmomentdiagramisaninclinedstraightline.ThebendingmomentdiagramasshowninFig.(c)canbedrawnbydeterminingthetwopoint,suchasM=-Flatx=0andM=0atx=l.(a)(b)FAsseeninFig.(b)(c),theshearforceisthesameinallcrosssectionsofthebeam,andthebendingmomentismaximumatthefixedendsection.AyBl(a)(b)(c)xxFQMFlxxF+-FExample3AsimplysupportedbeamshowninFig.(a),issubjectedtoauniformloadq.Findtheshearforceandbendingmomentequations,andthenmakeashearforcediagramandbendingmomentdiagram.Solution:(1)Findthesupportreactionforce.(2)Findtheequationsofshearforceandbendingmoment.qyAxB(a)xlBFAF(a)(b)qyAFAxxBFlB(a)+FQ(b)(c)2qlx2qlMx4l34l2232ql2232ql(3)Makeshearforceandbendingmomentdiagrams.theshearforcediagramisaninclinedstraightlineandcanbedrawnbytwopointsonit.themomentdiagramisaquadraticparabola.+-themomentdiagramisaquadraticparabola,qyAFAxxBFlB(a)+FQ(b)(c)2qlx2qlMx4l34l2232ql2232ql+-Fromtheshearforceandbendingmomentdiagramswecanget:qyAFAxxBFlB(a)+FQ(b)(c)2qlx2qlMx4l34l2232ql2232ql+-Example4AsimplysupportedbeamshowninFig.(a),issubjectedtoaconcentratedforceF.Findtheshearforceandbendingmomentequations,andthenmakeashearforcediagramandbendingmomentdiagram.solution:(1)Findthesupportreactionforce.derivedfromtheequilibriumconditions∑MB=0and∑MA=0,weget
yxABlPBFC(↑)(↑)AFab(2)Findtheshearforceequationandbendingmomentequation.
Takeanarbitrarysectionatx1fromtheorigininthesectionAC
Takeanarbitrarysectionatx2fromtheorigininthesectionCByxABlPBFCAFab+Mx+-x(3)
Makeshearforceandbendingmomentdiagrams.yxABlPBFCAFab2x1xFQThebendingmomentatthesectionCwheretheconcentratedforceFactsismaximumAtthepointwheretheconcentratedforceisapplied,theshearforceundergoesasuddenchange,thevalueofwhichisequaltothevalueoftheconcentratedforce,+Mx+-xyxABlPBFCAFab2x1xFQThedistributedloadsetq(x)isacontinuousfunctionandisspecifiedtobepositiveupwards.Oyxxdx(a)dxcM(x)FQ(x)M(x)+dM(x)FQ(x)+dFQ(x)Accordingtotheconditionsofstaticequilibrium,dxcM(x)FQ(x)M(x)+dM(x)FQ(x)+dFQ(x)
wecanget
bendingmomentshearforceintensityofdistributedload(descendingpower)(descendingpower)Itisnotingthattheloadintensityispositiveintheupwarddirectionandthexaxisispositiveintherightwarddirection.TheshearforceFQ(x)
andthebendingmomentM(x)arebothcontinuousfunctionsofxintheinterval.Thereisneitheraconcentratedforcenoraconcentratedcoupleintheinterval.(1)Attheconcentrationofforce:theshearstresschangesabruptly.Thebendingmomentdiagramformsaturningpoint.(2)Attheconcentrationoftheforcecouple:thebendingmomentdiagramchangesabruptly.Fa/4F/2Fa/2a/2aqqa2/
8qa/
2M/
2Ma/2a/2M/
a(3)FQ(x)=0,i.e.dM/dx=0,theslopeofthemomentdiagramiszero.Themomentinthatsectionisanextremevalue.(4)q(x)=0,i.e.FQ(x)=c,
theshearforceonthesectionisconstant.Andthebendingmomentisalinearfunctionofx.Fa/4F/2Fa/2a/2aqqa2/
8qa/
2M/
2Ma/2a/2M/
a(5)q(x)=c.i.e.FQ(x)=cx+b.Theshearforceonthissectionisalinearfunctionofx,thebendingmomentisaquadraticfunctionofx.Theshearforcediagramisaslopingstraightlineandthebendingmomentdiagramisaquadraticparabola.Fa/4F/2Fa/2a/2aqqa2/
8qa/
2m/
2Ma/2a/2m/
aFa/4F/2Fa/2a/2aqqa2/
8qa/
2M/
2Ma/2a/2M/
aInfact,theconcentratedforcesaredistributedoveramicro-segmentofthebeam,andtheshearforceandbendingmomentdiagramsshouldvarycontinuouslyoverthismicro-segment.Forthesakeofsimplicity,thedistributedforcesonthemicro-segment∆lareconsideredasconcentratedforces(i.e.
∆l→0).+-pl(a)+(b)(c)Asimilarexplanationcanbegivenfortheabruptchangesinthemomentdiagramatthecouple.Example6Usingtherelationshipsbetweenbendingmoment,shearforceanddistributedloadintensity,drawtheshearforceandbendingmomentdiagramsoftheoverhangingbeamshowninFig.(a)andcheck.Aqacq2qaB3x1x2xCFDFDaa4aFQ(a)solution:(1)Findthesupportreactionforce.from
,wehave
(↑)
from,wehave(↑)Aqacq2qaB3x1x2xCFDFDaa4aFQ(a)(2)Drawshearforcediagram.SectionACFQAright=-qaSectionDBFQBleft=0SectionCDFQDleft=-2qaFQCright=2qa3a2qa2qaqaAqacq2qaB3x1x2xCFDFDaa4axFQ(a)(b)(3)DrawbendingmomentdiagramSectionAC2qa22qaqax3a2qa2qaqaAqacq2qaB3x1x2xCFDFDaa4aFQ(a)(b)xM(c)SectionCDSectionDB10.5Normalstressinpurebending1.PurebendingFQABaaCDFFxTheshearforceandbendingmomentdiagrams+-FQFFx+xMFaAC、DB:bothshearforceandbendingmomentarenotzero-----------thetransverseloadbendingCD:theshearforceisequaltozeroandthebendingmomentisconstant-----------purebendingpurebendingtransverseloadbending2.Normalstressinpurebending(1)InferenceideasGeometricrelationPhysicalrelationStaticrelationRelationshipbetweennormalstrainandneutralsurfacecurvatureRelationshipbetweennormalstressandneutralsurfacecurvatureDeterminingtheneutralaxisNeutralsurfacecurvatureexpressionsandnormalstressexpressions(planesectionhypothesis
)(Hook'sLaw)(Relationshipbetweenaxialforce,bendingmomentandnormalstressinsection)
1)Purebendingexperiments(1)Thetransverselineremainsstraight,butisturnedbyasmallangle(2)Thelongitudinallinebecomescurved,butremainsperpendiculartothetransverseline(3)Thelongitudinallinelocatedattheconcaveedgeshortensandthelongitudinallineattheconvexedgeelongates(4)Inthebeamwidthdirection,theupperpartelongatesandthelowerpartshortensmnabxDabnmnmbbaamnMMqD(a)(b)Assumptions
(1)Planesectionhypothesis:eachcrosssectionofthebeamremainsasaplaneperpendiculartotheaxisofthedeformedbeamafterdeformation.Allcrosssectionsonlyturnedbyananglearoundoneoftheaxesonthecrosssection.
(2)Uniaxialforceassumption:allthefibersparalleltotheaxisofthebeamdonotsqueezeeachother.Allthelongitudinalfibersareaxiallystretchedorcompressed.Deformationmodelofabeamneutralsurface:Alayeroflongitudinalfibersinthebeamwhichisneitherelongatednorshortened.neutralaxis:TheintersectionlinebetweentheneutralsurfaceandthecrosssectionWhenthebeamisdeformed,thecrosssectionisrotatedarounditsneutralaxis.neutralaxisneutralsurfaceTransverseaxisofsymmetryLongitudinalaxisofsymmetry2)Deformationgeometryequationdx12bby121O2O(a)(b)dqr2¢b¢2¢b¢1O2Odx1¢1¢yThelinestrainoflongitudinalfiberb-bis:(a)Note:Thelongitudinalnormalstrainεatanypointonthecrosssectionisproportionaltothedistanceyfromthatpointtotheneutralaxis.3)Physicalequations
Hooke'slaw
(b)Thenormalstressinbendingislinearlydistributedalongtheheightofthecrosssection.Mzmaxs+(1)Thenormalstressateachpointatthesamedistancefromtheneutralaxisisequal(2)Thenormalstressontheneutralaxisisequaltozeroneutralaxis4)StaticrelationsThecombinedforceofnormalstressisequaltotheaxialforceyzNote:theneutralaxismustpassthroughthecentroidofthecrosssection.(c)MzsdAyzoyneutralaxisneutralaxisisthemomentofinertiaofthecrosssectionareawithrespecttotheneutralzaxis.Thecombinedforceofthenormalstressonthez-axis(neutralaxis)isequaltothebendingmomentinthecrosssectionyz(c)MzsdAyzoyneutralaxisneutralaxisImportantformula:yzmaxs-(c)Mzmaxs+EIziscalledtheflexuralrigidityofthebeam,whichindicatestheabilityofthebeamtoresistbendingdeformationThebasicformulafordeterminingthecurvature1/ρoftheneutralsurfaceofthebeam.neutralaxisneutralaxis5)Sectionmodulusofbendingthemaximumnormalstressoccursatthefarthestdistancefromtheneutralaxis,i.e.mergethetwogeometricquantitiesIzandymaxofthecrosssection,weobtainthen
whereWziscalledthesectionmodulusofbendingandisageometricquantityofthebeamstrengthwiththedimensionof[length]3.Forarectangularsection(Fig.a)Foracircularsection(Fig.b)2bydyzyczydc··(a)(b)2b6)NormalstressinthecrosssectionduringshearbendingCrosssectionnolongerremainsflatwhenshearbending.Experimentsandelastictheoryshowthatthecontributionofshearforcetothenormalstressisnegligibleforlongandslenderbeams(span/height>5).ExampleAsimplysupportedbeamisshowninpicture.Wehaveknownl=3m,q=40kN/m.Find:(1)Normalstressatpointsaandbonthedangeroussectionwhenthebeamisplacedvertically.
(2)Maximumnormalstressinthedangeroussectionwhenthebeamisplacedhorizontally(b)(d)·ya·b120z18050yzABlq(a)solution:(1)Makebendingmomentdiagram.Thedangeroussectionisthespansection.ABlq(a)(c)+28ql(2)CalculationofmomentofinertiaIz.·ya·b120z18050Pointa:compressivestress;pointb:tensilestress.(3)Findthenormalstressatpointsa,b.·ya·b120z18050z(b)maxs-maxs+sWhenthebeamisplacedhorizontally,they-axisistheneutralaxisThemaximumnormalstressislocatedatyz(d)maxs-maxs+·ya·b120z18050z10.6Shearstressinbending1.ShearstressesinrectangularbeamsInderivingtheshearstressformula,thefollowingassumptionsaremadeaboutitsdistributionlaw:(1)ThedirectionofshearstressatanypointonthecrosssectionisparalleltothedirectionofshearforceFQ.(2)Theshearstressisuniformlydistributedalongthesectionwidth.Themagnitudeoftheshearstressisonlyrelatedtothecoordinatey.Theshearstressisequalateachpointofequaldistancetotheneutralaxis.dxxm1m1nn(a)ozbxm1mn1ndxyxytFQ(b)nMM+dMm1mn1ndxxt¢rpxzybm1mn1ntpydxFN1FN21yqdAs1At¢r(d)(c)dxxm1m1nn(a)ozbxm1mn1ndxyxytFQ(b)ncombinedforceoftheinternalforcesystem(rightsection):(a)(b)MM+dMm1mn1ndxxt¢rpxzybm1mn1ntpydxFN1FN21ydAs1At¢r(d)(c)isstaticmomentofthepartialcross-sectionalareaA1totheneutralaxis.Thisvaluevarieswiththepositionofthelongitudinalsectionpr.MM+dMAccordingtothetheoremofcomplementaryshearingstressesandtheaboveassumptions,itisknownthatτ'isnumericallyequaltoτy,andisalsouniformlydistributedalongthecross-sectionalwidth.Similarly,thecombinedforceoftheinternalforcesystemontheleftsiderncanbefoundas(c)Duetoand
arenotequal,theremustbeashearforceonthetopsurfacerpofthehexahedron.shearstresscomposedofτ'is(d)tomaintaintheequilibriumofthexdirectionofthelowermicro-segment,i.e.(e)Substituting(a),(b)and(c)intoequation(e),wegetisnumericallyequaltoτ(y).TheshearstressinthecrosssectionatyfromtheneutralaxisisTheaboveequationistheformulafortheshearstressinarectangularbeam.Sz*isthestaticmomentoftheareaA1abouttheneutralaxis.Aftersimplification,weget10.7Calculationofstrength1.StrengthconditionofbendingstressinpurebendingThenormalstressstrengthconditionofthebeam:
beamofequalsection:
Forthematerialswithequaltensileandcompressivestrength(e.g.carbonsteel),themaximumabsolutenormalstressinthebeamshouldnotexceedtheallowablestress.Formaterialswithunequaltensileandcompressivestrengths(e.g.castiron),thestrengthshouldbecalculatedseparately,i.e.whereσmax+andσmax-arethemaximumtensilestressandmaximumcompressivestress,respectively.[σ+]and[σ-]arethecorrespondingallowablestresses.
Thestrengthconditionsofthebendingstresscangenerallybeusedforstrengthverification,sectiondesignanddeterminationoftheallowableload.Thegeneralprocessofstrengthcalculationofnormalstressis:(1)Findthesupportreactionforceofthebeamanddrawthebendingmomentdiagram.(2)Findoutthedangeroussectionanddeterminethedangerouspointaccordingtothebendingmomentdiagram.(3)Accordingtothenormalstressstrengthcondition,performthecorrespondingstrengthcalculation.2.Strengthconditionofshearstressinbendingtheshearstressstrengthcondition:forstraightbeamsofequalsection:Forslendersolidsectionbeams,theanalysiscanbedoneaccordingtothenormalstressstrengthconditionwithoutcheckingtheshearstress.Forbeamswithshortspanlengthsandlargeloadsnearthebearingsorrivetedandweldedbeamswiththinwebs,theshearstressmustbecheckedExample
Thereisacastironbeamwithslottedsectionandneutralz-axis.Itisknownthatq=10N/mm,F=20KNTrytocheckthenormalstressstrengthofthebeam.FABCDqAFBF2m2m2m(a)yz2y1ysolution
FindthesupportreactionforceThemaximumbendingmomentisshowninthefigureAFBFqFABCD2m2m2m+-10kNm20kNmInsectionB,themaximumtensilestressisateachpointontheupperedgeAFBFqFABCD2m2m2m+-10kNm20kNmyz2y1yAFBFqFABCD2m+-10kNm20kNmyz2y1yThemaximumtensilestressisateachpointontheloweredge2m2mAFBFqFABCD+-10kNm20kNmyz2y1yMaximumtensilestressinsectionC2m2m2mInsummary,thestrengthofthebeamissufficientdiscussionIfthecrosssectionofthebeaminthisquestionisinverted,isitreasonableintermsofthestrengthofthebeam?yz10.8Displacementandrigidityconditionofbeams1.DisplacementofbeamTakethesimplysupportedbeamasanexample.Theaxisofthebeambeforedeformationissetasxaxisandtheleftendissetastheoriginofthecoordinateyaxis.yxqqxFvrOAfterthebeamisdeformed,itsaxiswillbebentintoacurveinthex-yplane,whichiscalledthedeflectioncurveofthebeam.Twobasicquantitiesusedtomeasurethedisplacementofthebeam:1)deflectionvofpoint:Thelineardisplacementofthepointonthebeamaxisinthedirectionperpendiculartothexaxis.Deflectionispositivewhendirectedupwardsandnegativewhendirecteddownwards;2)angulardisplacementθofsection:theangulardisplacementofthecrosssectionarounditsneutralaxis.Counterclockwise----positive,clockwise----negative.yxqqxFvrOThedeflectionofeachpointonthebeamvarieswithx.Thisvariationruleisexpressedinthedeflectioncurveequationasυ=f(x)
Angleθisalsoequaltotheanglebetweenthetangentlineoftheflexurecurveatthatsectionandtheaxis.θisaverysmallangle.WegetyxqqxFvrO2.rigidityconditionofbeamsInordertoensurethenormaloperationofthebeam,wenotonlyrequirethebeamtohavesufficientstrength,butalsoneedtocontrolthedeformationofthebeam:
wherevmaxandθmaxarethemaximumdeflectionandmaximumangleofrotationofthebeam.The[v]and[θ]aretheallowabledeflectionandallowableangleofrotation.Theirspecificvaluesaredeterminedbytheworkingconditionsandcanbefoundinthecode.
10.9DeflectionofbeamsCurvatureequationforbeaminpurebendingSincethebendingmomentMisfunctionofx,thecurvatureatdifferentlocationsalongthebarlengthisdifferent.Sowehave(b)Fromadvancedmathematics
(c)ApproximatedifferentialequationsofdeflectioncurveSubstitutingequation(c)intoequation(b),weget
(d)Thisisthedifferentialequationforthedeflectioncurveofthebeam.Undersmalldeformationv'≪1,theaboveequationcanbeapproximatedas(e)Thisequationhasapositiveornegativesign.Butafterspecifyingthesignofthebendingmomentandselectingthex-ycoordinatesystem,thesignisdetermined.RegulationsWhenthebendingmomentispositive,thebeamaxisisbentintoadownwardconvexcurve;whenthebendingmomentisnegative,thebeamaxisisbentintoanupwardconvexcurve.Itisalsoknownthatwhenthepositivedirectionofvisspecifiedupward,thesecond-orderderivativev''ispositiveforevertpointonadownwardconvexcurve;whilethesecond-orderderivativev''isnegativeforeverypointonanupwardconvexcurve.Sincev''andM(x)
havethesamesign,theequation(e)shouldtakeapositivesign.
Forthevariablesectionbeam,theIshouldbeunderstoodasI(x).Forequal-sectionbeams,Iisaconstant.equation(a)isalsooftenwrittenas
Theaboveequationisusuallyreferredtoastheapproximatedifferentialequationofthedeflectioncurveofbeams,fromwhichtheequationofθandtheequationoffcanbederived.2.Integrationmethod(e)Thenmultiplybothendsofequationbydxandintegratetoobtaintheequationofthedeflectioncurve(f)WhereCandDareintegrationconstants.Integratingoverequation,wegettheangleequationForaspecificbeam,thedeflectionorangleofrotationofsomesectionsissometimesknown.
Forexample,atthefixedend,boththedeflectionandtheangleofrotationareequaltozero(Fig.a).Thedeflectioni
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版无学生单位信息化项目联合研发合同3篇
- 二零二五年度个人融资担保保险合同范本2篇
- 党建知识讲解
- 维修维护委托合同三篇
- 医疗器械工程师研发医疗设备
- 二零二五年度户外活动策划个人劳务合同2篇
- 二零二五年度企业职工工伤保险补贴专项资金使用协议3篇
- 二零二五年度个人出租公寓合同(含社区文化活动参与)3篇
- 二零二五年度水产养殖产品出口代理合同样本
- 二零二五版商场物业管理合同范本(绿色能源利用规划)3篇
- 时间的重要性英文版
- 2024老旧小区停车设施改造案例
- 合成生物学技术在生物制药中的应用
- 消化系统疾病的负性情绪与心理护理
- 高考语文文学类阅读分类训练:戏剧类(含答案)
- 协会监事会工作报告大全(12篇)
- 灰坝施工组织设计
- WS-T 813-2023 手术部位标识标准
- 同意更改小孩名字协议书
- 隐患排查治理资金使用专项制度
- 家具定做加工合同
评论
0/150
提交评论