




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MeshGeneration
MarkFilipiak
EdinburghParallelComputingCentre
TheUniversityofEdinburgh
1Introduction
Continuousphysicalsystems,suchastheairflowaroundanaircraft,thestressconcentrationinadam,theelectricfieldinanintegratedcircuit,ortheconcentrationofreactantsinachemicalreactor,aregenerallymodelledusingpartialdifferentialequations.Toperformsimulationsofthesesystemsonacomputer,thesecontinuumequationsneedtobediscretised,resultinginafinitenumberofpointsinspace(andtime)atwhichvariablessuchasvelocity,density,electricfieldarecalculated.Theusualmethodsofdiscretisation,finitedifferences,finitevolumesandfiniteelements,useneighbouringpointstocalculatederivatives,andsothereistheconceptofameshorgridonwhichthecomputationisperformed.Therearetwomeshtypes,characterisedbytheconnectivityofthepoints.Structuredmesheshavearegularconnectivity,whichmeansthateachpointhasthesamenumberofneighbours(forsomegridsasmallnumberofpointswillhaveadifferentnumberofneighbours).Unstructuredmesheshaveirregularconnectivity:eachpointcanhaveadifferentnumberofneighbours.Figure1givesanexampleofeachtypeofgrid.Insomecasespartofthegridisstructuredandpartunstructured(e.g.,inviscousflowswheretheboundarylayercouldbestructuredandtherestoftheflowunstructured).
Figure1:Structuredmesh(left)andunstructuredmesh(right).
Intherestofthischapter,thevariousdiscretisationmethodsaredescribed,withtheirmeshrequirements.Chapter2describesthemethodsusedtogeneratestructuredmeshesinsimpledomains(algebraicandellipticmethods)andtheextensiontocomplexdomainsusingmultiblock.Chapter3describesmethodsusedtogenerateunstructuredmeshes,concentratingonthetwomainmethodsforproducingtriangular/tetrahedralmeshes:advancingfrontandDelaunaytriangulation.Chapter4givesaverybriefintroductiontoadaptivemeshing.
1.1Discretisationandmeshtype
Themaindiscretisationmethodsarefinitedifferences[8],finitevolumes(whichisequivalenttofinitedifferences)[9]andfiniteelements[10].Toillustratethemethods,weconsidertheconservationformoftheconvectionequation.
Whereisthedensity,isthevelocity,andisasourceterm.Thetermisthefluxof.
Thefinitedifferenceformulationapproximatesthederivativesusingneighbouringpoints,e.g.,foraregular,rectangulargridwithspacinginthedirection.
Althoughirregulargridscanbeusedforfinitedifferences,regulargridsareinvariablyused.Theseleadtosimpledifferenceschemesandefficientsolvers(onvectormachines,forexample).Therecanbeproblemswiththefinitedifferenceschemeatcoordinatesingularitiesforcertainregulargrids(e.g.,sphericalpolarcoordinates)[12]
Inthefinitevolumeformulation,thephysicalspaceissplitupintosmallvolumesandthepartialdifferentialequationsintegratedovereachofthesevolumes:
Thenthevariablesareapproximatedbytheiraveragevaluesineachvolume,andthefluxesthroughthesurfacesofeachvolumeareapproximatedasfunctionofthevariablesinneighbouringvolumes.
Finitevolumediscretisationcanusebothregularandirregularmeshes.Inanirregularmeshthefluxesthroughthesurfacesarestillwelldefined.
Thefiniteelementmethodalsosplitsthespacesupintosmallvolumes,the‘elements’.Ineachelement,thevariablesandfluxesareapproximatedusingweightingfunctions.Thecomputationalvariablesarethecoefficientsoftheseweighting(or‘shape’)functions.
Finiteelementmethodsgenerallyuseirregularmeshes:thereisnospecialadvantageinusingregularmeshes.
1.2Meshcharacteristics
Foralltypesofmeshes,therearecertaincharacteristicsthatwewanttocontrol.
Thelocaldensityofpoints.Highdensitygivesmoreaccuracy,butcomputationtakeslonger.Thisleadstoadaptivemeshingmethods,treatedverybrieflyinChapter4.
Thesmoothnessofthepointdistribution.Largevariationsingriddensityorshapecancausenumericaldiffusionoranti-diffusionanddispersionorrefractionofwaves.Thiscanleadtoinaccurateresultsorinstability[12].
Theshapeofthegridvolumes.Forinstance,boundarylayersinfluidflowrequireagridthatisverycompressednormaltotheflowdirection.Inthefiniteelementmethodusingtriangularelementsthemaximumanglemustbeboundedstrictlybelowtoproveconvergenceofthemethodastheelementsizeisreduced[11].
Forsimpledomains,thechoicebetweenregularorirregularmeshesisgovernedmainlybythediscretisationmethod.However,forcomplexdomains(e.g.,theinsideofahydro-electricturbine)irregularmeshesarepreferredtoregularmeshes.Irregularmeshgeneration(atleastfortriangularortetrahedralelements)canbefullyautomaticandfast.Regularmeshgenerationrequiresthedomaintobesplitupintosimpleblockswhicharethenmeshedautomatically.Thisblockdecompositionisatbestsemi-automaticandcanrequireman-monthsofusereffort.
2Structuredmeshes
Thischapterbeginswithadiscussionofboundary-fittedgridsandthediscretisationofPDEsonthem,thendealswiththemainmethodsforgridgenerationofsimpledomains(usingalgebraicordifferentialequationmethods)andthenexplainsthemultiblockconceptusedformorecomplicateddomains.References[12]and[13]aredetailedexpositionsofstructuredmeshgeneration.
2.1Boundary-fittedmeshes
Structuredmeshesarecharacterisedbyregularconnectivity,i.e.,thepointsofthegridcanbeindexed(by2indicesin2D,3indicesin3D)andtheneighboursofeachpointcancalculatedratherthanlookedup(e.g.,theneighboursofthepointareat,,etc.).Meshesonarectangulardomainaretrivialtogenerate(thoughcomecareneedstobetakeninthediscretisationatconvexcorners)andstructuredmeshgenerationtechniquesconcentrateonmeshingdomainswithirregularboundaries,e.g.,theflowinbloodvessels,orthedeformation,flowandheattransferinmetalbeingformedindies.Generallythemeshesaregeneratedsothattheyfittheboundaries,withonecoordinatesurfaceforming(partof)theboundary.Thisgivesaccuratesolutionsneartheboundaryandenablestheuseoffastandaccuratesolvers.Forfluidflowthesegridsallowtheeasyapplicationofturbulencemodels,whichusuallyrequirethegridtobealignedwiththeboundary.Thealternativeistousearectangulargridwhichisclippedattheboundary,withlocalgridrefinementnearsharpfeaturesontheboundary(‘Cartesiangrids’).Thiswillreducethetruncationorderattheboundaryandwillrequirethemeshcellstobeclippedattheboundary,increasingthecomplexityofthesolver(evenforafinitevolumecode).CartesiangridgenerationisveryfastandhasbeenusedforEuleraerodynamics[14];itdoesnotappeartobeapplicabletoNavier-Stokesaerodynamics.
Themostcommonmethodofgeneratingboundary-fittinggridsistohaveonecontinuousgridthatfitstoalltheboundaries.Theeffectistofitacontiguoussetofrectangularcomputationaldomainstoaphysicaldomainwithcurvedboundaries(Figure2).
Figure2:Two-blockboundary-fittedgrid
Itisdifficulttofitcomplexdomainswithonemappingfromarectangularcomputationaldomainwithoutgeneratingexcessivelyskewedgrids.Togetroundthisproblemthedomainissplitupintoblocksandeachblockisgridded,withsomecontinuityrequirementsattheblockinterfaces;thisismultiblock.ThedecompositionofthedomainintoblocksisusuallydonemanuallyusingCADtechniquesandisslow.
Analternativetocontinuousboundary-fittedgridswithmultipleblocksistouseaboundaryfittinggridneareachboundary,andsimplerectangulargridintheinterior,andinterpolatebetweenthem.Thesearecalledoversetorchimeragrids(Figure3)[15].
Figure3:Oversetgrids
Thistypeofgridiseasiertogeneratethanamultiblockgridsinceeachgridislocalanddoesn’tneedtomatchtoothers.Theindividualgridswillgenerallybeofhighquality(lowdistortion).However,theinterpolationcanbedifficult,especiallywithmorethantwogridsoverlapping,anditaddstothesolvertime(increasingitby10%-30%).Theoverlappinggridscannotbetoodifferentinresolutionandthiscancauseproblemswiththegridsrequiredforboundarylayersinviscousflowsimulations.
Chimeragridsareveryusefulformovingboundaries(e.g.,helicopterblades)ormultipleboundaries(e.g.,particlesinafluid).Mostofthegridremainsfixedbuttheinterpolationchangesasthegridsmovewiththeboundaries.
Chimeragridsdohavecertainadvantages,andtherecentwork[16]onconservativeinterpolationmethodshaveincreasedtheirusefulness.However,thebulkofstructuredgridgenerationisbasedonmultiblocktypegrids,andwewillconcentrateonthesefortherestofthischapter.
2.2Problemsolutiononcurvedgrids
Oncethegridisgenerated,thephysicalproblemhastobediscretisedandsolvedonthisgrid.Itispossibletocalculatefinitedifferenceorfinitevolumeformulasusingthephysicalgriddirectly,butthiswillreducethetruncationorderoftheFD/FVschemesincethegridsaregenerallynon-uniform.Thepreferredmethodistotransformtheequationsusedtomodeltheproblemintocomputationalspace.Sincethephysicalgridisdefinedassometransformationfromtherectangularcomputationalgrid,thisprocessisstraightforward.Theresultingequationsinthecomputationalspacewillincludetheeffectsofthecoordinatetransformation,e.g.,timederivativesofmovinggrids.Thefinitedifferencingcanbedoneonthetransformedequations,onthecomputationalgrid.Sincethecomputationalgridisusuallycompletelyregular,highordermethodscanbeused,andthetruncationorderispreservediftheresultingFD/FVequationsaretransformedbacktothephysicalgrid.(Flowsolverscanbedevelopedtousechimeragrids,withtheextrabook-keepingrequiredtointerpolatebetweeneachgrid.)
AlthoughtheorderofFD/FVmethodscanbepreserved,thereareothereffectsofcurvilineargridsontheaccuracyofthesolution.
Gridsizevariationgivesnumericaldiffusion(oranti-diffusionleadingtoinstability).Theeffectisworstwithsmallgridsizeandlargesolutiongradients.
Non-orthogonality,orskewness,ofthe(physical)gridincreasesthecoefficientofthetruncationerror,butdoesn’tchangetheorder.Skewnessofuptoareacceptableinthecentreofthegrid,butone-sideddifferencesareusedatboundaries,whereorthogonalityshouldbemaintained.Theselimitsonskewnessarethemainreasonthatmultiblockmethodsareused.
Inamultiblockscheme,thecornerjunctionsbetweenblocksareusuallypointswithnon-standardconnectivity(e.g.,in2D,5gridlinesfromapointratherthan4)andtheseneedspecialtreatment(e.g.,forfinitevolumediscretisationthesepointsneedtobediscretisedinphysicalspace).
2.3Boundaryfittinggridsonasingleblock
Forsimpledomains,asinglegridcanbeusedwithoutleadingtoexcessiveskewness.Thecomputationalspaceisarectangleorcuboid,oratleasthasarectangularboundary,witharegular,rectangulargrid.Wethenneedtodefinea1-1mappingfromthecomputationalspacetothephysicalspace.Themethodscurrentlyusedare
algebraicgridgeneration,wherethegridisinterpolatedfromthephysicalboundaries,
methodswhereaPDEforthegridpointcoordinatesissolved,
variationalgridgeneration,wheresomefunctional,e.g.,smoothness,ismaximised/minimised(variationalgridgenerationisnottreatedinthisreport,see[13]fordetails),
othermethods,(nottreatedinthisreport),e.g.,conformalmapping[12],[13].
2.4Algebraicgridgeneration:interpolation
Themethodusedinthealgebraicmethodofgridgenerationistransfiniteinterpolation(TFI).
2.4.1Transfiniteinterpolation(TFI)
Workingin2D(theextensionto3Disstraightforward),takethecomputationaldomainastheunitsquarewithcoordinatesand,andthephysicaldomainassomeregionwithcoordinatesand.Togeneratethegridinthephysicalspace,wewouldcreateagridintheunitsquareandmapthisintothephysicaldomain.Therearetworequirementsforthismapping(Figure4):
Itmustbe1-1,and
theboundariesofthecomputationalspacemustmapintotheboundariesofthephysicalspace,butotherwisethemappingcanbearbitrary,althoughitmaynotproduceagoodgrid.
Figure4:Mappingofboundaries
TFIisonekindofmapping,wherethephysicalcoordinates,treatedasafunctionofthecomputationalcoordinates,areinterpolatedfromtheirvaluesontheboundariesofthecomputationaldomain.Sincethedataisgivenatanon-denumerablenumberofpoints,theinterpolationiscalledtransfinite.
The2Dinterpolationisconstructedasalinearcombinationof21Dinterpolations(alsocalledprojections)andtheirproduct.Firstdefinetheblendingfunctionsandthatwillbeusedtointerpolateineacherpolatesvaluesfromtheboundaryintothedomain,interpolatesvaluesfromtheboundaryintothedomain,andsimilarlyforinthedirection.Therequirementsonandare
andsimilarlyforinthedirection.Thesimplestblendingfunctionislinear,givinglinearinterpolation
The1Dtransfiniteinterpolations(projections)areformedasfollows(forthecoordinate)
andtheproductprojectionis
whichisthefiniteinterpolantforthevaluesofatthefourcornersofthecomputationaldomain.
The2Dtransfiniteinterpolationisthen
Figure5:Transfiniteinterpolation
whichinterpolatestotheentireboundary.Toformthegridinthephysicalspace,thisinterpolantisusedtomapthepointsofaregulargridinthecomputationalspace(Figure5).
ItispossibletoextendtheTFItosothatitinterpolatestoseveralcoordinatelines,notjusttheboundaries.Thisisusefultocontrolthegriddensityandalsomayberequiredtoensurea1-1mapping(i.e,avalidgrid).Theblendingfunctionswouldthenbe,forexample,cubicsplines.Itisalsopossibletomatchnormalderivatives,e.g.,attheboundaries.Thisallowsgridslopecontinuitybetweentheblocksofamultiblockgrid.
Figure6:Overspill
TherearesomeproblemswithTFI.Themappingwillpropagateboundarysingularities(corners)intotheinteriorofthedomain,whichisnotidealforfluidflowsimulations.Amoreseriousproblemisthatifthemappingisnot1-1thenoverspilloccurs(Figure6).
Thiscanbecorrectedbere-parameterisingtheboundaries,oraddingconstraintlines(surfacesin3D)insidethedomain.
However,TFIgridgenerationisveryfastandistheonlycompetitivemethodfor3D.ItispossibletouseanPDEbasedgeneratortorefineagridproducedusingTFI.
2.5PDEgridgeneration
TheideabehindthesemethodsistodefinePDEsforthephysicalspacecoordinatesintermsofthecomputationalspacecoordinates,andthensolvetheseequationsonagridincomputationalspacetocreateagridinphysicalspace.ThemaintypeofPDEusediselliptic,whichissuitablefordomainswithclosedboundaries(forunboundeddomains,afictitiousboundaryatlargedistancesisused).Thealternativesarehyperbolicandparabolicequations,whichareusedforunboundeddomains.
2.5.1Ellipticgridgeneration
ThesemethodsstartwithanPDEforthecomputationalspacecoordinatesandintermsofthephysicalspacecoordinatesand(theextensionto3Disstraightforward).ThesimplestexampleistheLaplaceequation
Partsofthephysicalboundary,correspondingtocoordinatelines,arethen‘equipotentialsurfaces’(Figure7)
Figure7:Ellipticgridgenerationboundaries
In2D,theextremumprincipleguaranteesthatthemappingis1-1,andtheLaplaceoperatorissmoothingsothatboundaryslopediscontinuitiesarenotpropagatedintotheinterior.
Inordertosolvetheequationinitscurrentform,youwouldalreadyneedagridinthephysicaldomain,sotheequationistransformedsothatarethedependentvariables,andaretheindependentvariables
Usingtheequationforintherelation
gives
and(themetrictensor)canbeexpressedintermsof(see[12]fordetails).
Thisquasi-linearequationcanthenbesolvedintherectangulardomain,withthelocationofthepointsonthephysicalboundariesastheboundarydataatthepointsonthecomputationalboundaries.Anystandardsolvercanbeused,andanalgebraicallygeneratedgridcanbeusedastheinitialguesstoensure/increaseconvergence.
GridsbasedontheLaplaceequationarenotveryflexible.Thecoordinatelinestendtobeequallyspaced,exceptnearconvexorconcaveboundaries,anditisnotpossibletocontrolthegridlineslopeattheboundaries(sincethisisa2ndorderequation).
Tocontrolthegridspacingandslope,wecanaddasourceterm(controlfunction),givingPoisson’sequation
TheeffectofthecontrolfunctionisshowninFigure8
Figure8:Effectofcontrolfunctions
Themetrictensorisfactoredoutofthesourcetermstogive,ingeneral
Thetransformedequationsnowbecome
Usuallyonlyone-dimensionalstretchingineachdirectionisrequired;thenthesourcetermis(nosum).Intheory,thesourcetermsaredefinedintermsofthephysicalcoordinates,butinpracticetheyaredefinedintermsofthecomputationalcoordinates,sotheywillcauseattractionto/repulsionfromgridpointsratherthanfixedphysicalpoints.Thismakesthedirect(manual)useofcontrolfunctionsratherdifficultandtheytendtobeusedindirectlytoachieveavarietyofeffects
Becauseofthestrongsmoothing,thecoordinatelineswilltendtobeequallyspacedintheinteriorofthedomain.Togettheboundarypointspacingtopropagateintotheinterior,sourcetermscanbederivedfromboundarydatatogivethedesiredspacing,andtheninterpolated(usingtransfiniteinterpolation)
Thepointspacingisfixedontheboundary,andsincethegridgenerationequationsare2ndorder,itisnotpossibletocontrolthecoordinatelineslopeattheboundaryaswell.OnepossiblesolutionistousethebiharmonicequationratherthanLaplace’sequation,butthepreferredmethodistousecontrolfunctions.InStegerandSorenson’smethod[12]thecontrolfunctionsareiterativelyadjustedastheellipticequationissolved,andthegridlineslopeattheboundary,thegridpointspacingalongtheboundary,andthespacingofthefirstparallelgridlinefromtheboundary,canallbecontrolled.Thiscanbeusedtogiveagridthatisorthogonalattheboundary(e.g.,forboundarylayers).Itcanalsobeusedtogiveslopeandspacingcontinuityforpatchedgrids(forembeddedgridsinmultiblock,butseelaterforabetterbutslowermethodofmatchingatblockboundaries).
2.6Implementationin3D
In3Dwehaveacuboidasthecomputationaldomainandthegenerationprocessproceedsintheorder:edges,surfaces,volume.Firstwechoosethecomputationalgrid.Thegriddingoftheedgesiscalculatedusinga1DPoissonequation.Thentheboundarysurfacegridsaregenerated.Thisissimilarto2Dgridgeneration,butthesurfacecurvatureneedstobetakenintoaccount(surfacesareusuallydefinedintheCADsystemasafunctionof2Dparameterspace,e.g.,contiguousbicubicsplinespatches,andsimple2Dgridgenerationcanbeperformedinthisspace).Finally,the3Dgridgenerationscanbedone,usingthesurfacegridsasdata.
Therearesomeimplementationdifficultieswithellipticgridgeneration
Thetransformedequationsarenon-linear,sousingagoodinitialguess(fromanalgebraicgridgenerator)willspeedupconvergence.
Therecanbeslowconvergence(orfailure)forlargecontrolfunctions,sharpcorners,orhighlystretchedgrids.
Themethodisreallytooslowfor3Dgrids,wherealgebraictechniquesaregenerallyused.
2.7Othermethods
2.7.1Hyperbolicgridgeneration
InsteadofusinganellipticPDEtogeneratethegrid,hyperbolicequationshavebeenused,e.g.in2D
wherethefirstequationenforcesorthogonalityandthesecondcontrolsthecellarea.
Thesemethodsarealsoavailablein3D.Theyhavecertaincharacteristics
theyproduceorthogonalgrids,
theydon’tsmoothboundarydiscontinuities,
theyareapplicabletoexteriordomains(e.g.,theflowaroundanaerofoil).Thesolutionforthegridcoordinatesismarchedoutfromtheboundary,
theycanfailforconcaveboundarysurfaces(asthesolutionproceeds,gridlinesoverlapandcellvolumesbecomenegative),
theyarefast,takingaboutthesametimeasoneiterationofanellipticgridgenerator.
2.7.2Parabolicgridgeneration
Parabolicmethodshavebeenusedforgridgeneration,combiningthespeedofthehyperbolicgenerator(marching)withincreasedsmoothing,butthesemethodsdonotseemtobewidelyused.
2.8Multiblock
Intheory,complexgoemetriescanbemappedtoonerectangular(heretakerectangulartoapplyto2Dand3D)region(perhapsnotsimply-connected)butthiswillleadtounacceptabledistortionofthegridcells.Inpractice,thephysicalregionisbrokenupintopiecesthateachhavea(relatively)simplemappingfromarectangulargrid.Thesepieces(blocks)arefittedtogether(multiblock)withsomedegreeofgridcontinuityattheirinterfaces,rangingfromnone(eventhegridpointcoordinatesdiffer)tocomplete(lookslikeasinglegridwithnoslopeorspacingdiscontinuities).Sothegridgenerationprocesssplitsintotwoparts,thedecompositionofthephysicaldomainintoblocksandthegriddingofeachblock.Thedecompositionprocesshasnotyetbeenfullyautomated,andrequiresconsiderableuserinteraction(e.g.,choosingblockedgestoalignwithobjectedges)toproducegoodmeshes.Themeshingoftheblockscanproceedautomatically,usingoneofthemethodsdiscussedabove.
Beforelookingatmultipleblocks,welookatsomeextensionstoasimplerectangular(physical)blockthatcanbeusedtofitobjectsandthencanbeinsertedintothemultiblockschemeasasingleblock.
2.8.1C,O,Hgrids
Figure9:Degeneratepoints
C,O,andHgrids,sonamedbecauseoftheirapproximateshape,areslightextensionsofthesimple‘rectangular’block.Thecomputationalblocksareusuallysimplerectangles,butcornersinthecomputationalspaceneednotcorrespondtocornersinthephysicalspaceandviceversa(Figure9).Atthesedegeneratepointscareneedstobetakenwiththedifferenceformulation.
Figure10:Multiply-connectedblock
Thecomputationalblockcanbemultiplyconnected(Figure10),butcutscanbemadetotransformthemtosimply-connectedblocks,mappabletoarectangle,andthisleadstotheC,OandHgrids(infacttheHgridtypeincludesthismultiply-connectedblock).
Figure11:Otypegrid
TheOgridjustapolargrid(Figure11).TheCgrid(Figure12)wasdevelopedforaerofoils,withroundedleadingedgesandsharptrailingedges.Itgivesamuchbettergrid(andmoreaccuratesolutions)thananHtypegridaboutanaerofoil.
Figure12:Ctypegrid
TheHgridisaCartesian-typegrid,butallowingamultiply-connectedregionasshownbefore,orwiththeinteriorslabreducedtoaslit(Figure13).
Figure13:Htypegrid
Acrossthecut,thecoordinatedirectionsorspeciescanchange(seeFigure12).Thiswillmeanthatspecialcaseswillhavetobeprocessedinthedifferenceformulationoftheproblem(andforthegridgenerationifaPDEmethodisused).Thiscomplicationcanbeavoidedbyusingaextralayerofpoints,ahalo,toholdcopiesoftheconnectingpointsfromtheothersideofthecut(Figure14).Thisisalmostthesameasusinghaloesindomaindecompositionforparallelprocessing,butinFigure14the‘boundary’isalongaline/surfaceofgridpoints.Inafinitevolumeformulationthedatapointsarecenteredonthegridcells,andinthiscasethehaloesareexactlythesameasindomaindecomposition.
Figure14:Halopoints
Oncethehaloesaresetup,thesamedifferenceformulascanbeusedintheinteriorandonthecuts.
2.8.2Multiblock
UsingC,OandHgridsinthecomponentblocks,wecannowcreatecompositegrids:multiblock.
Thefirststepistosegmentthephysicalregionintosub-regionseachboundedby4(curved)sidesin2Dor6surfacesin3D.Thissteprequiresconsiderableuserinteractiontogenerateagooddecompositionofthedomain(e.g.,withblockedgesalignedwithsharpfeatures).
Thesecond,automatic,stepistogenerategridsineachsub-region.Theoverallgridisformedbyjoiningthesesub-gridstogether.Thedegreeofcontinuityofthegridlinesattheboundariesbetweenthesub-regionscanbeanythingfromcompletecontinuityofallderivativestonocontinuity,noteventhegridpointsontheboundary.Evidently,thelesscontinuity,themoreinterpolation/approximationwillhavetobedoneinthesolverwhenprocessingsub-regionboundaries,andtherewillbesomelossofaccuracyinthedifferenceformulations.Ifalgebraicmethodsareusedineachblock,gridlinecontinuityisensuredbygeneratingthecommonedgesandthensurfaces(in3D)andthenvolumes,eachstepusingtheboundarypointsgeneratedbythepreviousone.ItisalsopossibletoapplyTFItogridlineslopes,andthisallowsslope/spacingcontinuitytobeensured.IfPDE(elliptic)methodsareused,theequationscanbesolvedinthewholedomain,usingthehaloestotransferphysicalcoordinateinformationfromoneblocktoitsneighbours.Thisgivescompletecontinuityofthegridcoordinatesandtheregionboundarieswillalsoadjust.Solvingoverthewholedomainisverytimeconsuming,sothealternativeistosolveineachblockanduseStegerandSorensontypecontrolfunctionstoensureslope/spacingcontinuity.
Figure15showsasimplemultiblockexample,withthecomputationalgridpointsthatmaptoasinglephysicalgridpointidentified.
Figure15:Exampleofmultiblock:3C-typegrids
Therearesomedisadvantageswithfullyboundary-fittedmultiblockgrids:
Theblockingrequiresagreatdealofusereffort,thiscanbe1man-monthforcomplexconfigurations.Severaldifferentphysicalconfigurationsmaybeinvestigatedinthedesignphaseofaproduct,andeachmayneedadifferentblockstructure
Changesofgeometryinoneblockcancausechangestomanyotherblocks
Changeinthegri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 球场租赁协议书范本
- 授权合作销售协议书
- 智慧乡村开发协议书
- 特价商品协议书模板
- 戒酒协议书手写模板
- 消防管道合并协议书
- 集训学校安全协议书
- 食堂承包协议书封面
- 师徒结对协议书课题
- 诊所护士就业协议书
- 温州市十校联合体2022-2023学年高二下学期期中联考化学试题含答案
- 企业员工爱岗敬业培训课件
- 数字美的智慧工业白皮书-2023.09
- 行政管理学教案
- 南京郑和外国语学校小升初数学期末试卷测试卷(含答案解析)
- 古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
- 2023年-2024年电子物证专业考试复习题库(含答案)
- 小学语文跨学科学习任务群学习任务设计策略
- 新人教版七年级下册语文现代文阅读理解及答案
- Matlab在信息光学中的应用课件
- 人教版小学语文1-6年级古诗词目录-按年级
评论
0/150
提交评论