数学最常用的基本数学方法_第1页
数学最常用的基本数学方法_第2页
数学最常用的基本数学方法_第3页
数学最常用的基本数学方法_第4页
数学最常用的基本数学方法_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学最常用的基本数学方法数学中常用的基本方法方法不过是指人们为了达到某种目标而采取的手段、途径和行为方式中所包含的可操作规则或模式。通过长期实践,人们发现了许多应用数学思想的手段、途径或程序。当同一手段、途径或程序被重复运用,并且都达到了预期目的时,便构成了数学方法。数学方法是一种利用数学工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预测的方法。数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性。在科学技术研究中,数学方法发挥着举足轻重的作用:一是提供简洁确定的形式化语言;二是提供数量分析及计算的方法;三是提供逻辑推理的工具。现代科学技术,特别是电子计算机的发展,与数学方法的地位和作用相辅相成。在中学数学中常用的基本数学方法大致可分为以下三类:(1)逻辑学中的方法。例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(需要分类讨论)等。这些方法既遵循逻辑学的基本规律和法则,又因应用于数学而具有数学的特色。(2)数学中的特殊方法。例如配方法、待定系数法、加减法、公式法、换元法(也称为中间变量法)、拆项补项法(含有添加辅助元素以实现化简的数学思想)、因式分解等方法,以及平行移动法、翻折法等。这些方法在解决某些数学问题时起着重要作用,对某一类问题也都是一种通用的解决途径。高中数学中的函数函数简介:在数学领域,函数是一种关系,使一个集合中的每个元素对应到另一个(可能相同的)集合中的唯一元素。自变量是与函数相关联的变量,该变量中的任何值都能在另一变量中找到对应的固定值。函数是两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应元素。函数的概念对于数学和数量学的每一个分支来说都是最基础的。~‖函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。functions数学中的一种对应关系,是从非空集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数。精确地说,设X是一个非空集合,Y是非空数集,f是个对应法则,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应,就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{yy=f(x),x∈X}为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。若先定义映射的概念,可以简单定义函数为:定义在非空数集之间的映射称为函数。例1:y=sinxX=[0,2π],Y=[-1,1],它给出了一个函数关系。当然,把Y改为Y1=(a,b),a<b为任意实数,仍然是一个函数关系。其深度y与一岸边点O到测量点的距离x之间的对应关系呈曲线,这代表一个函数,定义域为[0,b]。以上3例展示了函数的三种表示法:公式法,表格法和图像法。一般地,在一个变化过程中,如果有两个变量X与Y,并且对于X的每一个确定的值,Y都有为一得值与其对应,那么我们就说X是自变量,Y是X的函数。如果当X=A时Y=B,那么B叫做当自变量的值为A时的函数值。复合函数有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的函数:x→u→y,这要看定义域:设ψ的定义域为U。f的值域为U,当U*U时,称f与ψ构成一个复合函数,例如y=lgsinx,x∈(0,π)。此时sinx>0,lgsinx有意义。但如若规定x∈(-π,0),此时sinx<0,lgsinx无意义,就成不了复合函数。立体几何学习中的图形观立体几何的离不开图形,图形是一种语言,图形能帮我们直观地感受空间线面的位置关系,培养空间.所以在立体几何的中,我们要树立图形观,通过作图、读图、用图、造图、拼图、变图培养我们的.一、作图作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系.所以作图是解决立体几何问题的第一步,作好图有利于问题的解决.例1已知正方体中,点P、E、F分别是棱AB、BC、的中点(如图1).作出过点P、E、F三点的正方体的截面.分析:作图是学习中的一个弱点,作多面体的截面又是作图中的难点.看到这样的题目不知所云.有的连结P、E、F得三角形以为就是所求的截面.其实,作截面就是找两个平面的交线,找交线只要找到交线上的两点即可.观察所给的条件(如图2),发现PE就是一条交线.又因为平面ABCD//平面,由面面平行的性质可得,截面和面的交线一定和PE平行.而F是的中点,故取的中点Q,则FQ也是一条交线.再延长FQ和的延长线交于一点M,由公理3,点M在平面和平面的交线上,连PM交于点K高中政治,则QK和KP又是两条交线.同理可以找到FR和RE两条交线(如图2).因此,六边形PERFQK就是所求的截面.二、读图图形中往往包含着深刻的意义,对图形理解的程度影响着我们的正确解题,所以读懂图形是解决问题的重要一环.例2如图3,在棱长为a的正方体中,EF是棱AB上的一条线段,且EF=b<a,若Q是上的定点,P在上滑动,则四面体PQEF的体积().(A)是变量且有最大值(B)是变量且有最小值(C)是变量无最大最小值(D)是常量分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段EF的位置不定,点P在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体积要具备哪些条件?仔细观察图形,应该以哪个面为底面?观察,我们发现它的形状位置是要变化的,但是底边EF是定值,且P到EF的距离也是定值,故它的面积是定值.再发现点Q到面PEF的距离也是定值.因此,四面体PQEF的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题.三、用图在立体几何的学习中,我们会遇到许多似是而非的结论.要证明它我们一时无法完成,这时我们可考虑通过构造一个特殊的图形来推翻结论,这样的图形就是反例图形.若我们的.心中有这样的反例图形,那就可以帮助我们迅速作出判断.例3判断下面的命题是否正确:底面是正三角形且相邻两侧面所成的二面角都相等的三棱椎是正三棱锥.分析:这是一个学生很容易判断错误的问题.大家认为该命题正确,其实是错误的,但大家一时举不出例子来加以说明.问题的关键是二面角相等很难处理.我们是否可以考虑用一个正三棱锥通过变形得到?如图4,设正三棱锥的侧面等腰三角形PAB的顶角是,底角是,作的平分线,交PA于E,连接EC.可以证明是等腰三角形,所以AB=BE.同理EC=AB.那么,△EBC是正三角形,从而就是满足题设的三棱锥,但不是正三棱锥.四、造图在立体几何的学习中,我们可以根据题目的特征,精心构造一个相应的特殊几何模型,将陌生复杂的问题转化为熟悉简单的问题.例4设a、b、c是两两异面的三条直线,已知,且d是a、b的公垂线,如果,那么c与d的位置关系是().(A)相交(B)平行(C)异面(D)异面或平行分析:判断空间直线的位置关系,最佳是构造恰当的几何图形,它具有直观和易于判断的优点.根据本题的特点,可以考虑构造正方体,如图5,在正方体中,令AB=a,BC=d,.当c为直线时,c与d平行;当c为直线时,c与d异面,故选D.五、拼图空间基本图形由点、线、面构成,而一些特殊的图形也可以通过基本图形拼接得到.在拼图的过程中,我们会发现一些变和不变的东西,从中感悟出这个图形的特点,找出解决待求解问题的方法.例5给出任意的一块三角形纸片,要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种方案,并加以简要的说明.把一个直三棱柱展开后可得到甲、乙两部分,甲内部的三角形和乙是全等的,甲的三角形外是宽相等的三个矩形.现在的问题是能否把乙分为三部分,补在甲的三个角上正好成为一个三角形(如图丙)?因为甲中三角形外是宽相等的矩形,所以三角形的顶点应该在原三角形的三条角平分线上,又由于面积要相等,所以甲中的三角形的顶点应该在原三角形的内心和顶点的连线段的中点上(如图丁).按这样的设计,剪开后可以折成一个直三棱柱.六、变图几何图形千变万化,在不断的变化中展示几何图形的魅力,在不断的变化中培养我们的能力,在有意无意的变化中开阔我们的思路.例6已知在三棱锥中,PA=a,AB=AC=2a,,求三棱锥的体积.分析:此题的解决方法很多,但切割是不错的选择.思路1设D为AB的中点,依题意有:,,所以有:此解法实际上是把三棱锥一分为二,三棱锥B-PAD的底面是直角三角形,高就是BD,从而大大简化了计算.这种分割的方法也是立体几何解题中的一种重要策略.它化复杂为简单,化未知为已知.思路2从点A出发的三条棱两两夹角为,故可补形为正四面体.如图,延长AP至S,使PA=PS,连SB、SC,于是四面体S-ABC为边长等于2a的正四面体,而且从上述的六个方面,我们可以看到,在立体几何的学习中如果我们能正确了解图形,合理利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论