浙江省嵊州市谷来镇中学2025届数学九上期末预测试题含解析_第1页
浙江省嵊州市谷来镇中学2025届数学九上期末预测试题含解析_第2页
浙江省嵊州市谷来镇中学2025届数学九上期末预测试题含解析_第3页
浙江省嵊州市谷来镇中学2025届数学九上期末预测试题含解析_第4页
浙江省嵊州市谷来镇中学2025届数学九上期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嵊州市谷来镇中学2025届数学九上期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,为线段上一点,与交与点,,交与点,交与点,则下列结论中错误的是()A. B. C. D.2.二次函数化为的形式,结果正确的是()A. B.C. D.3.下列各式运算正确的是()A. B. C. D.4.如图,在圆内接四边形ABCD中,∠A:∠C=1:2,则∠A的度数等于()A.30° B.45° C.60° D.80°5.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A.最小值―3B.最小值3C.最大值―3D.最大值36.判断一元二次方程是否有实数解,计算的值是()A. B. C. D.7.抛物线y=2(x﹣3)2+2的顶点坐标是()A.(﹣3,2) B.(3,2) C.(﹣3,﹣2) D.(3,﹣2)8.用配方法解方程时,原方程应变形为()A. B. C. D.9.一元二次方程(x+2)(x﹣1)=4的解是()A.x1=0,x2=﹣3B.x1=2,x2=﹣3C.x1=1,x2=2D.x1=﹣1,x2=﹣210.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则EC:AE的值为()A. B. C. D.11.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.012.如图,点A,B,C都在⊙O上,∠ABC=70°,则∠AOC的度数是()A.35° B.70° C.110° D.140°二、填空题(每题4分,共24分)13.已知,=________.14.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.15.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).16.如图,在中,,点D、E分别在边、上,且,如果,,那么________.17.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.18.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像在第二象限交于点,与轴交于点,点在轴上,满足条件:,且,点的坐标为,。(1)求反比例函数的表达式;(2)直接写出当时,的解集。20.(8分)解方程:x+3=x(x+3)21.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)每件衬衫降价多少元时,商场平均每天的盈利是1050元?(2)每件衬衫降价多少元时,商场平均每天盈利最大?最大盈利是多少?22.(10分)体育文化公司为某学校捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.

(1)下列事件是不可能事件的是.A.选购乙品牌的D型号B.既选购甲品牌也选购乙品牌C.选购甲品牌的A型号和乙品牌的D型号D.只选购甲品牌的A型号(2)写出所有的选购方案(用列表法或树状图);(3)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?23.(10分)如图,在四边形中,,,点分别在上,且.(1)求证:∽;(2)若,,,求的长.24.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交线段CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在个满足题意的点.25.(12分)某批发商以每件50元的价格购500件恤,若以单价70元销售,预计可售出200件,批发商的销售策略是:第一个月为了增加销售,在单价70元的基础上降价销售,经过市场调查,单价每降低1元,可多售出10件,但最低单价高于购进的价格,每一个月结束后,将剩余的恤一次性亏本清仓销售,清仓时单价为40元.(1)若设第一个月单价降低元,当月出售恤获得的利润为元,清仓剩下恤亏本元,请分别求出、与的函数关系式;(2)从增加销售量的角度看,第一个月批发商降价多少元时,销售完这批恤获得的利润为1000元?26.关于x的一元二次方程为(m-1)x2-2mx+m+1=0(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?

参考答案一、选择题(每题4分,共48分)1、A【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角,故可进行判断.【详解】∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故结论中错误的是A,故选A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理.2、A【分析】将选项展开后与原式对比即可;【详解】A:,故正确;B:,故错误;C:,故错误;D:,故错误;故选A.【点睛】本题主要考查了二次函数的三种形式,掌握二次函数的三种形式是解题的关键.3、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.4、C【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.5、A【解析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.6、B【解析】首先将一元二次方程化为一般式,然后直接计算判别式即可.【详解】一元二次方程可化为:∴故答案为B.【点睛】此题主要考查一元二次方程的根的判别式的求解,熟练掌握,即可解题.7、B【分析】根据y=a(x﹣h)2+k,顶点坐标是(h,k)可得答案.【详解】解:抛物线y=2(x﹣3)2+2的顶点坐标是(3,2),故选:B【点睛】本题考查二次函数的性质;熟练掌握二次函数由解析式求顶点坐标的方法是解题的关键.8、A【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2−2x=5,配方得:x2−2x+1=1,即(x−1)2=1.故选:A.【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.9、B【解析】解决本题可通过代入验证的办法或者解方程.【详解】原方程整理得:x1+x-6=0∴(x+3)(x-1)=0∴x+3=0或x-1=0∴x1=-3,x1=1.故选B.【点睛】本题考查了一元二次方程的解法-因式分解法.把方程整理成一元二次方程的一般形式是解决本题的关键.10、A【分析】根据平行线截线段成比例定理,即可得到答案.【详解】∵DE∥BC,∴,∵AD=4,DB=2,∴,故选:A.【点睛】本题主要考查平行线截线段成比例定理,,掌握平行线截线段成比例,是解题的关键.11、D【分析】把x=0代入抛物线y=﹣2(x﹣1)2﹣3,即得抛物线y=﹣2(x﹣1)2﹣3与y轴的交点.【详解】当x=0时,抛物线y=﹣2(x﹣1)2﹣3与y轴相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,

∴抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为(0,-5).

故选:D.【点睛】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点.12、D【分析】根据圆周角定理问题可解.【详解】解:∵∠ABC所对的弧是,

∠AOC所对的弧是,

∴∠AOC=2∠ABC=2×70°=140°.

故选D.【点睛】本题考查圆周角定理,解答关键是掌握圆周角和同弧所对的圆心角的数量关系.二、填空题(每题4分,共24分)13、【分析】先去分母,然后移项合并,即可得到答案.【详解】解:∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了解二元一次方程,解题的关键是掌握解二元一次方程的方法.14、(3,﹣10)【分析】首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.【详解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,∴此时点D的坐标为(3,﹣10).故答案为:(3,﹣10).【点睛】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键.15、0.1【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.16、【分析】根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.17、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.18、不可能【分析】根据随机事件的概念进行判断即可.【详解】太阳从西边升起是不可能的,∴太阳从西边升起是不可能事件,故答案为:不可能.【点睛】本题考查了随机事件的概念,掌握知识点是解题关键.三、解答题(共78分)19、(1);(2)【解析】(1)过点B作BH⊥x轴于点H,证明≌得到BH与CH的长度,便可求得B点的坐标,进而求得反比例函数解析式;(2)观察函数图象,当一次函数图象在反比例函数图象下方时的自变量x的取值范围便是结果.【详解】解:(1)如图作轴于点则∴∵点的坐标为∴∵∴,在和中有∴≌∴,∴,即∴∴反比例函数解析式为(2)因为在第二象限中,点右侧一次函数的图像在反比例函数图像的下方,所以当时,的解集为.【点睛】本题考查了反比例函数和一次函数的交点问题,熟练掌握函数解析式的求法以及利用数形结合根据函数图象的上下位置关系得出不等式的解集是重点.20、x1=1,x2=﹣1【分析】先利用乘法分配律将括号外面的分配到括号里面,再通过移项化成一元二次方程的标准形式,利用提取公因式即可得出结果.【详解】解:方程移项得:(x+1)﹣x(x+1)=0,分解因式得:(x+1)(1﹣x)=0,解得:x1=1,x2=﹣1.【点睛】本题主要考查的是一元二次方程的解法,一元二次方程的解法主要包括:提取公因式,公式法,十字相乘等.21、(1)每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【分析】(1)设每件衬衫应降价x元,则每天多销售2x件,根据盈利=每件的利润×数量建立方程求出其解即可;

(2)根据盈利=每件的利润×数量表示出y与x的关系式,由二次函数的性质及顶点坐标求出结论.【详解】解:(1)设每件衬衫降价元根据题意,得整理,得解得答:每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)设商场每天的盈利为元.根据题意,得∵∴当时,有最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【点睛】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,销售问题的数量关系的运用,二次函数的运用,解答时求出函数的解析式是关键.22、(1)D;(2)见解析;(3).【分析】(1)根据不可能事件和随机随机的定义进行判断;

(2)画树状图展示所有6种等可能的结果数;

(3)找出A型器材被选中的结果数,然后根据概率公式求解.【详解】(1)只选购甲品牌的A型号为不可能事件.

故答案为D;

(2)画树状图为:

共有6种等可能的结果数;

(3)A型器材被选中的结果数为2,

所以A型器材被选中的概率=.【点睛】此题考查列表法与树状图法,解题关键在于利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23、(1)证明见解析;(2)16.【解析】(1)根据相似三角形的判定即可求出答案.(2)根据△EFB∽△CDA,利用相似三角形的性质即可求出EB的长度.【详解】(1)∵,∴,∵,∴,∴,∵,∴∽;(2)∵∽,∴,∵,,,∴.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定.24、(1)(2)当时,的长最大(3)【分析】(1)根据待定系数法求解即可;(2)设点的坐标为、点的坐标为,列出,根据二次函数的图象性质求解即可;(3)分以为对角线时、以为对角线时、以为对角线时三种情况进行讨论求解即可.【详解】解:(1)∵抛物线与轴交于、两点∴将、两点代入,得:∴∴抛物线的解析式为:.(2)∵直线与轴交于点,与轴交于点∴点的坐标为,点的坐标为∴∵点的横坐标为∴点的坐标为,点的坐标为∴∵,∴当时,的长最大.(3)∵由(2)可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论