版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届张家口市重点中学数学九上期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,从布袋中任意摸出一个球是白球的概率()A. B.C. D.2.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.3.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为()A. B. C. D.4.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.5.已知二次函数(为常数),当时,函数值的最小值为,则的值为()A. B. C. D.6.二次函数的图象的顶点坐标是()A. B. C. D.7.下列选项的图形是中心对称图形的是()A. B. C. D.8.如图,是的中位线,则的值为()A. B. C. D.9.下列命题①若,则②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形④的平方根是.其中真命题的个数是()A.0 B.1 C.2 D.310.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.不确定二、填空题(每小题3分,共24分)11.下表是某种植物的种子在相同条件下发芽率试验的结果.种子个数100400900150025004000发芽种子个数92352818133622513601发芽种子频率0.920.880.910.890.900.90根据上表中的数据,可估计该植物的种子发芽的概率为________.12.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.13.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.14.若点,在反比例函数的图象上,则______.(填“>”“<”或“=”)15.抛物线y=(x-1)2-7的对称轴为直线_________.16.等腰△ABC的腰长与底边长分别是方程x2﹣6x+8=0的两个根,则这个△ABC的周长是_____.17.已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c>0的解集是_____.18.如图,在中,,,,点D、E分别是AB、AC的中点,CF是的平分线,交ED的延长线于点F,则DF的长是______.三、解答题(共66分)19.(10分)如图,是的直径,是圆心,是圆上一点,且,是延长线上一点,与圆交于另一点,且.(1)求证:;(2)求的度数.20.(6分)解方程:x2﹣6x﹣40=021.(6分)如图,反比例函数的图象过点A(2,3).(1)求反比例函数的解析式;(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当△PAC的面积等于6时,点P的坐标.22.(8分)已知关于x的一元二次方程.(1)当m为何值时,方程有两个不相等的实数根?(2)设方程两根分别为、,且2、2分别是边长为5的菱形的两条对角线,求m的值.23.(8分)计算的值.24.(8分)如图,在中,,为边上的中线,于点(1)求证:BD·AD=DE·AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求的值.25.(10分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.26.(10分)如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°(1)求道路AB段的长(结果精确到1米)(2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据概率公式,求摸到白球的概率,即用白球除以小球总个数即可得出得到黑球的概率.【详解】∵在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,∴从布袋中任意摸出一个球是白球的概率为:.故选:C.【点睛】此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.2、A【解析】试题分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,则y=4×()=,∵AE<AD,∴x<3,综上可得:(0<x<3).故选A.考点:动点问题的函数图象;动点型.3、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到Rt△ADE≌Rt△ACB,于是.【详解】∵∠ACB=90°,AC=BC=1,
∴,
∴,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,∴.
故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.4、D【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.5、B【分析】函数配方后得,抛物线开口向上,在时,取最小值为-3,列方程求解可得.【详解】∵,∴抛物线开口向上,且对称轴为,∴在时,有最小值-3,即:,解得,故选:B.【点睛】本题考查了二次函数的最值,熟练掌握二次函数的图象及增减性是解题的关键.6、B【分析】根据二次函数的性质,用配方法求出二次函数顶点式,再得出顶点坐标即可.【详解】解:∵抛物线
=(x+1)2+3
∴抛物线的顶点坐标是:(−1,3).
故选B.【点睛】此题主要考查了利用配方法求二次函数顶点式以及求顶点坐标,此题型是考查重点,应熟练掌握.7、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查的是中心对称图形,理解中心对称图形的定义是判断这四个图形哪一个是中心对称图形的关键.8、B【分析】由中位线的性质得到DE∥AC,DE=AC,可知△BDE∽△BCA,再根据相似三角形面积比等于相似比的平方可得,从而得出的值.【详解】∵DE是△ABC的中位线,∴DE∥AC,DE=AC∴△BDE∽△BCA∴∴故选B.【点睛】本题考查了中位线的性质,以及相似三角形的判定与性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.9、A【分析】①根据不等式的性质进行判断;②根据圆心角、弧、弦的关系进行分析即可;③根据正多边形的定义进行判断;④根据平方根的性质进行判断即可.【详解】①若m2=0,则,此命题是假命题;②在同圆或等圆中,相等的圆心角所对的弧相等,此命题是假命题;③各边相等,各内角相等的多边形是正多边形,此命题是假命题;④=4,4的平方根是,此命题是假命题.所以原命题是真命题的个数为0,故选:A.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.10、A【分析】将方程化简,再根据判断方程的根的情况.【详解】解:原方程可化为,所以原方程有两个不相等的实数根.故选:A【点睛】本题考查了一元二次方程根的情况,灵活利用的正负进行判断是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个不相等的实数根;当时,方程没有实数根.二、填空题(每小题3分,共24分)11、0.1【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.1左右,从而得到结论.【详解】由表格可得,当实验次数越来越多时,发芽种子频率稳定在0.1,符合用频率佔计概率,∴种子发芽概率为0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.12、1【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【详解】解:根据勾股定理得:斜边为=17,设内切圆半径为r,由面积法r=3(步),即直径为1步,
故答案为:1.考点:三角形的内切圆与内心.13、【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)==.14、<【分析】根据反比例的性质,比较大小【详解】∵∴在每一象限内y随x的增大而增大点,在第二象限内y随x的增大而增大∴m<n故本题答案为:<【点睛】本题考查了通过反比例图像的增减性判断大小15、x=1【分析】根据抛物线y=a(x-h)2+k的对称轴是x=h即可确定所以抛物线y=(x-1)2-7的对称轴.【详解】解:∵y=(x-1)2-7
∴对称轴是x=1
故填空答案:x=1.【点睛】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键.16、11【详解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰长与底边长分别是方程的两个根,∴当底边长和腰长分别为2和4时,满足三角形三边关系,此时△ABC的周长为:2+4+4=11;当底边长和腰长分别为4和2时,由于2+2=4,不满足三角形三边关系,△ABC不存在.∴△ABC的周长=11.故答案是:1117、﹣1<x<1【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(1,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<1时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<1.故答案为﹣1<x<1.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.18、4【分析】勾股定理求AC的长,中位线证明EF=EC,DE=2.5即可解题.【详解】解:在中,,,∴AC=13(勾股定理),∵点、分别是、的中点,∴DE=2.5(中位线),DE∥BC,∵是的平分线,∴∠ECF=∠BCF=∠EFC,∴EF=EC=6.5,∴DF=6.5-2.5=4.【点睛】本题考查了三角形的中位线,等角对等边,勾股定理,中等难度,证明EF=EC是解题关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接,利用等腰三角形的性质证得,,再利用等角的关系得;(2)根据(1)可直接求得的度数.【详解】(1)如图,连接.,,,,.又,,,(2)由(1)得,.【点睛】此题考查圆的性质,等腰三角形的性质,题中依据连接OB是解题的关键.20、x1=10,x2=﹣1.【分析】用因式分解法即可求解.【详解】解:x2﹣6x﹣10=0,(x﹣10)(x+1)=0,∴x﹣10=0或x+1=0,∴x1=10,x2=﹣1.【点睛】本题考查一元二次方程的解法,解题的关键是掌握一元二次方程的解法,有直接开平方法、配方法、公式法、因式分解法.21、(1)y=;(2)(1,1),(﹣2,﹣3).【分析】(1)把点A的坐标代入反比例函数解析式,列出关于系数m的方程,通过解方程来求m的值;(2)设点P的坐标是(a,),然后根据三角形的面积公式来求点P的坐标.【详解】解:(1)设反比例函数为y=,∵反比例函数的图象过点A(2,3).则=3,解得m=1.故该反比例函数的解析式为y=;(2)设点P的坐标是(a,).∵A(2,3),∴AC=3,OC=2.∵△PAC的面积等于1,∴×AC×|a﹣2|=1,解得:|a﹣2|=4,∴a1=1,a2=﹣2,∴点P的坐标是(1,1),(﹣2,﹣3).【点睛】本题考查了反比例函数的面积问题,涉及的知识点有:待定系数法求函数解析式,坐标和图形性质,以及反比例函数的图像和性质,熟练掌握反比例函数的几何意义是解题的关键22、(1);(2)【分析】(1)由根的判别式即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得,又由一元二次方程根与系数的关系,所以有,据此列出关于m的方程求解.【详解】(1)∵方程有两个不相等的实数根,∴解得:∴当时,方程有两个不相等的实数根;(2)由题意得:∴解得:或∵2、2分别是边长为5的菱形的两条对角线∴,即∴【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.23、【分析】分别根据有理数的乘方、负整数指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;【详解】解:原式;【点睛】本题主要考查了特殊角的三角函数值,负整数指数幂,掌握特殊角的三角函数值,负整数指数幂是解题的关键.24、(1)见解析;(2);(3).【分析】(1)先利用等腰三角形的性质证明∠B=∠C,AD⊥BC,然后再证明△BDE∽△CAD即可;(2)利用勾股定理求出AD,再根据(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转炉炼钢理论练习卷含答案
- 2022小学班主任工作计划三年级范文
- xx市省级产业园区基础设施项目可行性研究报告
- 端盖 课程设计 图
- 城市更新项目经济效益分析
- c 查看器课程设计
- 简单汉字课程设计
- 2024年版个人工程借款合同3篇
- 2024年个人现金借款风险评估合同样本3篇
- 提高英语思维的课程设计
- 2025蛇年元旦晚会
- 《高低压配电室施工工艺标准》
- 2024年太阳能光伏组件高空清洗作业人员安全保障合同3篇
- 大学学业规划讲座
- 【MOOC】中国近现代史纲要-武汉理工大学 中国大学慕课MOOC答案
- 综合管廊知识
- 《国家课程建设》课件
- 四川省南充市2023-2024学年高一上学期期末考试 历史 含解析
- 餐饮业食品安全管理操作手册
- 2024-2025学年湖北省武汉市华中师大一附中高三上学期期中英语试题及答案
- 2025年公司半年工作总结及下半年工作计划
评论
0/150
提交评论