黑龙江省齐齐哈尔市五县2025届数学九上期末经典模拟试题含解析_第1页
黑龙江省齐齐哈尔市五县2025届数学九上期末经典模拟试题含解析_第2页
黑龙江省齐齐哈尔市五县2025届数学九上期末经典模拟试题含解析_第3页
黑龙江省齐齐哈尔市五县2025届数学九上期末经典模拟试题含解析_第4页
黑龙江省齐齐哈尔市五县2025届数学九上期末经典模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省齐齐哈尔市五县2025届数学九上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8 B.9 C.8或9 D.122.如图,正方形的顶点分别在轴和轴上,与双曲线恰好交于的中点.若,则的值为()A.6 B.8 C.10 D.123.如图是二次函数图象的一部分,则关于的不等式的解集是()A. B. C. D.4.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为5.如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6 B.8 C.10 D.126.如图,在中,,则劣弧的度数为()A. B. C. D.7.已知反比例函数,下列结论正确的是()A.图象在第二、四象限 B.当时,函数值随的增大而增大C.图象经过点 D.图象与轴的交点为8.二次函数y=ax2+bx+c的y与x的部分对应值如下表:x…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上 B.抛物线与y轴交于负半轴C.当x=﹣1时y>0 D.方程ax2+bx+c=0的负根在0与﹣1之间9.已知,则代数式的值为()A. B. C. D.10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.二、填空题(每小题3分,共24分)11.设O为△ABC的内心,若∠A=48°,则∠BOC=____°.12.如图,是半圆的直径,四边形内接于圆,连接,,则_________度.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.如图,某校教学楼AC与实验楼BD的水平间距CD=30m,在教学楼AC的底部C点测实验楼顶部B点的仰角为α,且sinα=,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,则教学楼AC的高度是_____m(结果保留根号).15.如图,在等腰直角△ABC中,∠C=90°,将△ABC绕顶点A逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.16.在等边三角形中,于点,点分别是上的动点,沿所在直线折叠后点落在上的点处,若是等腰三角形,则____.17.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.18.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.三、解答题(共66分)19.(10分)(1)计算;(2)解不等式.20.(6分)已知:△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.(1)求证:AD平分∠BAC;(2)若DF∥AB,则BD与CD有怎样的数量关系?并证明你的结论.21.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?22.(8分)列方程解应用题.青山村种的水稻2010年平均每公顷产6000kg,2012年平均每公顷产7260kg,求水稻每公顷产量的年平均增长率.23.(8分)如图,已知在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=6,劣弧DE的长为π,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).24.(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.25.(10分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)销售单价m(元/件)(1)请计算第几天该商品单价为25元/件?(2)求网店第几天销售额为792元?(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?26.(10分)问题背景:如图1,在中,,,,四边形是正方形,求图中阴影部分的面积.(1)发现:如图,小芳发现,只要将绕点逆时针旋转一定的角度到达,就能将阴影部分转化到一个三角形里,从而轻松解答.根据小芳的发现,可求出图1中阴影部分的面积为______;(直接写出答案)(2)应用:如图,在四边形中,,,于点,若四边形的面积为,试求出的长;(3)拓展:如图,在四边形中,,,,以为顶点作为角,角的两边分别交,于,两点,连接,请直接写出线段,,之间的数量关系.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据一元二次方程的解法以及等腰三角形的性质即可求出答案.【详解】解:①当等腰三角形的底边为2时,此时关于x的一元二次方程x2−6x+k=0的有两个相等实数根,∴△=36−4k=0,∴k=9,此时两腰长为3,∵2+3>3,∴k=9满足题意,②当等腰三角形的腰长为2时,此时x=2是方程x2−6x+k=0的其中一根,代入得4−12+k=0,∴k=8,∴x2−6x+8=0求出另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选B.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及等腰三角形的性质.2、D【分析】作EH⊥x轴于点H,EG⊥y轴于点G,根据“OB=2OA”分别设出OB和OA的长度,利用矩形的性质得出△EBG∽△BAO,再根据相似比得出BG和EG的长度,进而写出点E的坐标代入反比例函数的解析式,即可得出答案.【详解】作EH⊥x轴于点H,EG⊥y轴于点G设AO=a,则OB=2OA=2a∵ABCD为正方形∴∠ABC=90°,AB=BC∵EG⊥y轴于点G∴∠EGB=90°∴∠EGB=∠BOA=90°∠EBG+∠BEG=90°∴∠BEG=∠ABO∴△EBG∽△BAO∴∵E是BC的中点∴∴∴BG=,EG=a∴OG=BO-BG=∴点E的坐标为∵E在反比例函数上面∴解得:∴AO=,BO=故答案选择D.【点睛】本题考查的是反比例函数与几何的综合,难度系数较高,解题关键是根据题意求出点E的坐标.3、D【分析】先根据抛物线平移的规律得到抛物线,通过观察图象可知,它的对称轴以及与轴的交点,利用函数图像的性质可以直接得到答案.【详解】解:∵根据抛物线平移的规律可知,将二次函数向左平移个单位可得抛物线,如图:∴对称轴为,与轴的交点为,∴由图像可知关于的不等式的解集为:.故选:D【点睛】本题考查了二次函数与不等式,主要利用了二次函数的平移规律、对称性,数形结合的思想,解题关键在于通过平移规律得到新的二次函数图象以及与轴的交点坐标.4、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.5、B【分析】根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.【详解】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC=,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=1.故选:B.【点睛】此题考查的是抛物线和正方形的对称性的应用、求二次函数上点的坐标和矩形的面积,掌握抛物线和正方形的对称性、求二次函数上点的坐标和矩形的面积公式是解决此题的关键.6、A【解析】注意圆的半径相等,再运用“等腰三角形两底角相等”即可解.【详解】连接OA,

∵OA=OB,∠B=37°

∴∠A=∠B=37°,∠O=180°-2∠B=106°.故选:A【点睛】本题考核知识点:利用了等边对等角,三角形的内角和定理求解解题关键点:熟记圆心角、弧、弦的关系;三角形内角和定理.7、C【分析】根据反比例函数的性质逐条判断即可得出答案.【详解】解:A错误图像在第一、三象限B错误当时,函数值y随x的增大而减小C正确D错误反比例函数x≠0,所以与y轴无交点故选C【点睛】此题主要考查了反比例函数的性质,牢牢掌握反比例函数相关性质是解题的关键.8、D【分析】根据表中的对应值,求出二次函数的表达式即可求解.【详解】解:选取,,三点分别代入得解得:∴二次函数表达式为∵,抛物线开口向下;∴选项A错误;∵函数图象与的正半轴相交;∴选项B错误;当x=-1时,;∴选项C错误;令,得,解得:,∵,方程的负根在0与-1之间;故选:D.【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.9、B【解析】试题分析:根据题意令a=2k,b=3k,.故选B.考点:比例的性质.10、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2考点:切线的性质;最值问题.二、填空题(每小题3分,共24分)11、1【详解】解:∵点O是△ABC的内切圆的圆心,故答案为1.12、1【分析】首先根据圆周角定理求得∠ADB的度数,从而求得∠BAD的度数,然后利用圆内接四边形的性质求得未知角即可.【详解】解:∵AB是半圆O的直径,AD=BD,

∴∠ADB=90°,∠DAB=45°,

∵四边形ABCD内接于圆O,

∴∠BCD=180°-45°=1°,

故答案为:1.【点睛】考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是根据圆周角定理得到三角形ABD是等腰直角三角形,难度不大.13、4π【解析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【点睛】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.14、(10+1)【分析】首先分析图形,解直角三角形△BEC得出CE,再解直角三角形△ABE得出AE,进而即可求出答案.【详解】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=α,BE=CD=30;可得CE=BE×tanα,∵sinα=,∴tanα=,∴CE=30×=1.在Rt△ABE中,∠ABE=30°,BE=30,可得AE=BE×tan30°=10.故教学楼AC的高度是AC=(10+1)m.故答案为:(10+1)m.【点睛】本题考查了解直角三角形-俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.15、125°【分析】根据等腰直角三角形的性质得到∠CAB=45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【详解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.16、,或【分析】根据等边三角形的性质,得到CD=3,BD=,∠CBD=30°,由折叠的性质得到,,,由是等腰三角形,则可分为三种情况就那些讨论:①,②,③,分别求出答案,即可得到答案.【详解】解:∵在等边三角形中,,∴CD=3,BD=,∠CBD=30°,∵沿所在直线折叠后点落在上的点处,∴,,,由是等腰三角形,则①当时,如图,∴,∴,∴是等腰直角三角形,∴,,∵,∴,解得:;∴;②当,此时点与点D重合,如图,∴;③当,此时点F与点D重合,如图,∴,∴;综合上述,的长度为:,或;故答案为:,或.【点睛】本题考查了等边三角形的性质,折叠的性质,以及等腰三角形的性质,熟练运用折叠的性质是本题的关键.注意利用分类讨论的思想进行解题.17、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且18、2π【解析】试题分析:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB=,即圆锥的母线长为2,∴圆锥的侧面积=.考点:圆锥的计算.三、解答题(共66分)19、(1)0;(2);【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质和绝对值的性质分别化简得出答案;(2)先把不等式①按照去括号、移项、合并同类项、系数化为1的方法求出其解集;再把不等式②按照去分母、移项、合并同类项、系数化为1的方法求出其解集,最后求出其公共解集即可;【详解】解:(1)原式===0;(2)解不等式①得,x>﹣4;解不等式②得,;∴原不等式组的解集是;【点睛】本题主要考查了实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组,掌握实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组是解题的关键.20、(1)见解析;(2)BD=2CD证明见解析【分析】(1)连接OD.根据圆的半径都相等的性质及等边对等角的性质知:∠OAD=∠ODA;再由切线的性质及平行线的判定与性质证明∠OAD=∠CAD;(2)连接OF,根据等腰三角形的性质以及圆周角定理证得∠BAC=60°,根据平行线的性质得出BD:CD=AF:CF,∠DFC=∠BAC=60°,根据解直角三角形即可求得结论.【详解】(1)证明:连接OD,∴OD=OA,∴∠OAD=∠ODA,∵BC为⊙O的切线,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)连接OF,∵DF∥AB,∴∠OAD=∠ADF,∵AD平分∠BAC,∴∠ADF=∠OAF,∵∠ADF=∠AOF,∴∠AOF=∠OAF,∵OA=OF,∴∠OAF=∠OFA,∴△AOF是等边三角形,∴∠BAC=60°,∵∠ADF=∠DAF,∴DF=AF,∵DF∥AB,∴BD:CD=AF:CF,∠DFC=∠BAC=60°,∴=2,∴BD=2CD.【点睛】本题考查了切线的性质,涉及知识点有:平行线的判定与性质、等边三角形的性质、等腰三角形的性质以及圆周角定理,数形结合做出辅助线是解本题的关键21、第二周的销售价格为2元.【分析】由纪念品的进价和售价以及销量分别表示出两周的总利润,根据“这批旅游纪念品共获利1250元”等式求出即可.【详解】解:设降低x元,由题意得出:,整理得:,解得:x1=x2=1.∴10-1=2.答:第二周的销售价格为2元.22、10%【分析】根据增长后的产量=增长前的产量(1+增长率),设增长率是x,则2012年的产量是6000(1+x)2,据此即可列方程,解出即可.【详解】解:设水稻每公顷产量的年平均增长率为x,依题意得6000(1+x)2=7260,解得:x1=0.1,x2=﹣2.1(舍去).答:水稻每公顷产量的年平均增长率为10%.【点睛】此题考查了一元二次方程的应用,解答本题的关键是利用增长率表示出2012年的产量是6000(1+x)2,然后得出方程.23、(1)直线BC与⊙O相切,理由详见解析;(2).【分析】(1)连接OD,由角平分线的定义可得∠DAC=∠DAB,根据等腰三角形的性质可得∠OAD=∠ODA,即可证明OD//AC,根据平行线的性质可得,可得直线BC与⊙O相切;(2)利用弧长公式可求出∠DOE=60°,根据∠DOE的正切可求出BD的长,利用三角形和扇形的面积公式即可得答案.【详解】(1)直线与⊙O相切,理由如下:连接,∵是的平分线,∴,∵,∴,∴,∴,∴,∴,∴直线与⊙O相切.(2)∵,劣弧的长为,∴,∴∵,∴,∴.∴BE与劣弧DE所围成的阴影部分的面积为.【点睛】本题考查切线的判定、弧长公式及扇形面积,经过半径的外端点并且垂直于这条半径的直线的圆的切线;n°的圆心角所对的弧长为l=(r为半径);圆心角为n°的扇形的面积为S扇形=(r为半径);熟练掌握弧长公式及扇形面积公式是解题关键.24、(1)m=-1,n=-1;(2)y=-x+【分析】(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.【详解】(1)∵直线与双曲线相交于A(-1,a)、B两点,∴B点横坐标为1,即C(1,0)∵△AOC的面积为1,∴A(-1,1)将A(-1,1)代入,可得m=-1,n=-1;(2)设直线AC的解析式为y=kx+b∵y=kx+b经过点A(-1,1)、C(1,0)∴解得k=-,b=.∴直线AC的解析式为y=-x+.【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.25、(1)第10天时该商品的销售单价为25元/件;(2)网店第2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论