CSA大型语言模型(LLM)威胁分类 Large Language Model (LLM) Threats Taxonomy_第1页
CSA大型语言模型(LLM)威胁分类 Large Language Model (LLM) Threats Taxonomy_第2页
CSA大型语言模型(LLM)威胁分类 Large Language Model (LLM) Threats Taxonomy_第3页
CSA大型语言模型(LLM)威胁分类 Large Language Model (LLM) Threats Taxonomy_第4页
CSA大型语言模型(LLM)威胁分类 Large Language Model (LLM) Threats Taxonomy_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LargeLanguageModel(LLM)ThreatsTaxonomy

ThepermanentandofficiallocationfortheAIControlsFrameworkWorkingGroupis

/research/working-groups/ai-controls

©2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour

computer,view,print,andlinktotheCloudSecurityAllianceat

subject

tothefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)the

trademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas

permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.2

Acknowledgments

LeadAuthors

Reviewers

SiahBurke

PhilAlger

MarcoCapotondi

IlangoAllikuzhi

DanieleCatteddu

BakrAbdouh

KenHuang

VinayBansalVijayBolinaBrianBrinkley

Contributors

AnupamChatterjeeJasonClinton

MarinaBregkou

VidyaBalasubramanian

AlanCurranSandyDunnDavidGee

AvishayBar

ZackHamilton

MonicaChakrabortyAntonChuvakin

RicardoFerreiraAlessandroGrecoKrystalJackson

VicHargraveJerryHuang

RajeshKambleGianKapoorRicoKomenda

GianKapoor

VaniMittal

KushalKumar

AnkitaKumariYutaoMa

DannyManimboVishwasManralJesusLuna

MichaelRoza

LarsRuddigheit

JasonMorton

AmeyaNaik

GabrielNwajiakuMeghanaParwatePrabalPathak

RuchirPatwa

BrianPendletonKunalPradhan

DorSarig

Dr.MattRoldan

AmitSharma

RakeshSharmaKurtSeifried

CalebSima

EricTierling

JenniferToren

RobvanderVeerAshishVashishthaSounilYu

DennisXu

OmarSantos

Dr.JoshuaScarpino

NataliaSemenova

BhuvaneswariSelvaduraiJamillahShakoor

TalShapira

AkramSheriff

SrinivasTatipamula

Maria(MJ)SchwengerMahmoudZamani

RaphaelZimme

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.3

TableofContents

Acknowledgments 3

TableofContents 4

ObjectivesandScope 5

RelationshipwiththeCSAAIControlFramework 6

1.LargeLanguageModelAssets 7

1.1.DataAssets 7

1.2.LLM-OpsCloudEnvironment 9

1.3.Model 10

1.4.OrchestratedServices 11

1.5.AIApplications 13

2.LLM-ServiceLifecycle 15

2.1Preparation 16

2.2Development 17

2.3Evaluation/Validation 18

2.4Deployment 20

2.5Delivery 22

2.6ServiceRetirement 24

3.LLM-ServiceImpactCategories 26

4.LLMServiceThreatCategories 26

4.1.ModelManipulation 26

4.2.DataPoisoning 27

4.3.SensitiveDataDisclosure 27

4.4.ModelTheft 27

4.5.ModelFailure/Malfunctioning 27

4.6.InsecureSupplyChain 27

4.7.InsecureApps/Plugins 27

4.8.DenialofService(DoS) 28

4.9.LossofGovernance/Compliance 28

5.References/Sources 29

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.4

ObjectivesandScope

ThisdocumentwasauthoredbytheCloudSecurityAlliance(CSA)ArtificialIntelligence(AI)Controls

FrameworkWorkingGroup,withinthecontextoftheCSAAISafetyInitiative.Itestablishesacommon

taxonomyanddefinitionsforkeytermsrelatedtoriskscenariosandthreatstoLargeLanguageModels(LLMs).ThegoalistoprovideasharedlanguageandconceptualframeworktofacilitatecommunicationandalignmentwithintheIndustryandtosupportadditionalresearchwithinthecontextoftheCSAAI

SafetyInitiative.Morespecifically,thesedefinitionsandtaxonomyareintendedtoassisttheCSAAIControlWorkingGroupandtheCSAAITechnologyandRiskWorkingGroupintheirongoingefforts.

Inthiseffort,wefocusonthedefinitionofthefollowingelements(SeeFigure1):

●LLMAssets

●LLM-ServiceLifecycle

●LLM-ServiceImpactCategories

●LLM-ServiceThreatCategories

Figure1:CSALLMThreatTaxonomy

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.5

Thesedefinitionsandtaxonomyreflectanextensivereviewoftheavailableliterature,aswellasmeetingsanddiscussionsamongWorkingGroupmembersandco-chairs.Throughthiscollaborativeexercise,a

strongconsensusemerged,establishingafoundationalsetofcommonterminologiesguidingourcollectiveefforts.

Thisdocumentdrawsinspirationfromnumerousindustryreferencescitedattheendofthedocument,andmostnotablyfromNISTAI100-2E2023titled“AdversarialMachineLearning:ATaxonomyand

TerminologyofAttacksandMitigations”[Barrettetal.,2023].

Withthesedefinitionsandtaxonomy,conversationsregardingtheevaluationofAIthreatsandrisks,

developingappropriatecontrolmeasures,andgoverningresponsibleAIdevelopmentcanadvancewithgreaterclarityandconsistencyacrossdiverseCSAgroupsandamongstakeholders.Establishinga

commonnomenclaturereducesconfusion,helpsconnectrelatedconcepts,andfacilitatesmoreprecisedialogue.ThisdocumentconsolidateskeytermsintoacentralreferenceservingthepurposeofaligningboththeAIControlWorkingGroupandtheAITechandRiskWorkingGroupwithintheCSAAISafetyInitiative.

RelationshipwiththeCSAAIControlFramework

TheCSAAIControlFrameworkWorkingGroup’sgoalistodefineaframeworkofcontrolobjectivestosupportorganizationsintheirsecureandresponsibledevelopment,management,anduseofAI

technologies.TheframeworkwillassistinevaluatingrisksanddefiningcontrolsrelatedtoGenerativeAI(GenAI),particularlyLLMs.

Thecontrolobjectiveswillcoveraspectsrelatedtocybersecurity.Additionally,itwillcoveraspectsrelatedtosafety,privacy,transparency,accountability,andexplainabilityasfarastheyrelatetocybersecurity.

PleasereviewCSA’sblogposttoexplorethedifferencesandcommonalitiesbetween

AISafetyandAI

Security

.

Byfocusingonthebusiness-to-businessimplications,theCSAAIControlFrameworkcomplements

governmentefforts1inprotectingnationalsecurity,citizen’srightsandlegalenforcement,advocatingforsecureandethicalAIapplicationsthatcomplywithglobalstandardsandregulations.

1E.g.EUAIAct,U.S.ArtificialIntelligenceSafetyInstitute(USAISI),etc.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.6

1.LargeLanguageModelAssets

ThissectiondefinesthefoundationalcomponentsessentialforimplementingandmanagingLLM

systems,fromthedetaileddataassetscrucialfortrainingandfine-tuningthesemodels,tothecomplexLLM-Opsenvironment,ensuringseamlessdeploymentandoperationofAIsystems.Furthermore,this

sectionclarifiestheLLM'ssignificance,architecture,capabilities,andoptimizationtechniques(seeFigure2).Additionally,thissectionexploresthevitalaspectofassetprotection,leveragingtheResponsible,

Accountable,Consulted,Informed(RACI)matrixtodelineateresponsibilitieswithinbothopen-sourcecommunitiesandorganizationstowardsimplementationofAIservices.

Figure2:LLMAssets

1.1.DataAssets

InLLMservices,manyassetsplayanintegralroleinshapingaservice'sefficacyandfunctionality.Data

assetsareattheforefrontoftheseassetsandserveasthecornerstoneofLLMoperations.ThelistbelowdescribesthetypicalrangeofassetsconstitutinganLLMService:

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.7

●Datausedfortraining,benchmarking,testing,andvalidation

●Datausedforfine-tunetraining

●DatausedforRetrieval-AugmentedGeneration(RAG)

●Datacardsthatdefinethemetadataofthedatainuse

●Inputdata

●Usersessiondata

●Modeloutputdata

●Modelparameters(weights)

●Modelhyperparameters

●LogdatafromLLMsystems

Thefollowingarethedefinitionsoftheseassets:

1.Training,benchmarking,testing,andvalidationdata:Thisencompassesthedatasetusedtotrain,benchmark,test,andvalidatethemodel,consistingoftextsourcesfromwhichthemodelderivesinsightsintolanguagepatterns,andsemanticsthatareimperativeforqualityofthemodel.Eachdataelementis

treatedandmanagedindividually.

2.Fine-tunetrainingdata:Additionaldataisemployedtofine-tuneorfurtherpre-trainthemodelpost-initialtraining.Thisfacilitatesadjustmentstothemodel’sparameterstoalignmorecloselywithspecificusecasesordomains,enhancingitsadaptabilityandaccuracy.

3.Retrieval-AugmentedGeneration(RAG):IntegratesexternalknowledgebaseswithLLMs.By

retrievingrelevantinformationbeforegeneratingresponses,RAGenablesLLMstoleveragebothmodelknowledgeandexternalknowledgeeffectively.RAGcanretrievesupplementarydatafromvarious

sources,includinginternalsystems,andpublicsources,suchastheInternet,enrichinginputpromptsandrefiningthemodel'scontextualunderstandingtoproducehigher-qualityresponses.

4.Datacards:MetadataofthedatasetsusedforvariouspurposesinLLMneedstobemaintained.ThishelpsgovernAIdataandprovideslineage,traceability,ownership,datasensitivity,andcompliance

regimesforeverydatasetused.Storingandthencontinuouslyupdatingdatacardsasthedata,ownership,orrequirementschangeisessentialtomaintaincomplianceandvisibility.

5.Inputdata(system-levelprompt):Theinputdataisprovidedtosetthecontextandboundaries

aroundLLMsystems.Thesedatasetsareadditionallyusedtosettopicboundariesandguardrailsincaseofadversarialgeneration.

6.Usersessiondata:InformationamassedduringuserinteractionswiththeAIsystems,encompassinginputqueries,model-generatedresponses,andanysupplementarycontextprovidedbyusers,facilitatingpersonalizedinteractions.

7.Modeloutputdata:Theresultantoutputgeneratedbythemodelinresponsetoinputprompts,encompassingtextresponses,predictions,orotherformsofprocesseddata,reflectiveofthemodel'scomprehensionandinferencecapabilities.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.8

8.Modelparameters(weights):Internalparametersorweightsacquiredbythemodelduringtraining,delineatingitsbehaviorandexertingaprofoundinfluenceonitscapacitytogenerateandcontextuallyrelevantresponses.

9.Modelhyperparameters:Configurationsorsettingsspecifiedduringmodeltraining,including

parameterssuchaslearningrate,batchsize,orarchitecturechoices,arepivotalinshapingthemodel'soverallperformanceandbehavior.

10.Logdata:Recordeddataencapsulatingvariouseventsandinteractionsduringthemodel'soperation,

includinginputprompts,modelresponses,performancemetrics,andanyencounterederrorsoranomalies,instrumentalformonitoringandrefiningthemodel'sfunctionalityandperformance.

1.2.LLM-OpsCloudEnvironment

TheLLM-OpsEnvironmentencompassestheinfrastructureandprocessesinvolvedinthedeploymentandoperationofLLMs.Thefollowingbulletpointsarethekeytermsassociatedwiththisenvironment:

●Cloudrunningthetrainingenvironment

●Cloudrunningthemodelinferencepoint

●CloudrunningtheAIapplications

●Hybridandmulti-cloudinfrastructure

●Securityofthedeploymentenvironment

●Continuousmonitoring

●Cloudtohosttrainingdata(Storage)

ThesignificanceandessenceofeachoftheaboveassetwithintheframeworkoftheLLM-OpsEnvironmentisdescribedbelow:

1.Cloudrunningthetrainingenvironment:Thisdenotesthecloudplatformorserviceproviderentrustedwithhostingandmanagingthecomputationalresources,storagefacilities,andancillaryinfrastructurepivotalfortrainingLLMs.Itservesasthedevelopmentspacewheremodelsundergoiterativerefinementandenhancement.

2.Cloudrunningthemodelinferencepoint:Thisencapsulatesthecloudplatformorserviceprovidertaskedwithhostingandadministeringthecomputationalresources,storagesolutions,andassociated

infrastructureindispensablefordeployingLLMsandfacilitatinginferenceprocesses.Itenablesthemodeltogenerateresponsesbasedonuserinputs,ensuringseamlessinteractionandresponsiveness.

3.Public/Private/HybridCloudRunningtheAIapplications:ThisreferstothecloudplatformorserviceproviderentrustedwithhostingandoverseeingtheinfrastructureessentialforrunningAI

applicationsorAIservices,harnessingthecapabilitiesoftrainedlanguagemodels.ItservesastheoperationalhubwhereAI-drivenapplicationsleveragetheinferenceprowessofmodelstodelivervalue-addedfunctionalitiesandservicestoend-users.

4.Securityofthedeploymentenvironment:ThisencompassesthearrayofmechanismsandpoliciesimplementedtogovernandfortifyaccesstotheassortedcomponentsoftheLLM-OpsEnvironment.It

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.9

encompassesIdentityandAccessManagement(IAM)protocolsandnetworksecuritymeasures,safeguardingtheintegrityandconfidentialityofcriticalassetsandfunctionalities.

5.Continuousmonitoring:ThisdenotestheongoingprocessofvigilantlyscrutinizingtheLLM-OpsEnvironment'sperformance,securityposture,andoverallwell-being.Itencompassesthevigilant

surveillanceofthetrainingenvironment,inferenceendpoint,andapplicationcomponents,ensuringoptimalfunctionalitywhilepromptlyidentifyingandremedyinganyanomaliesorissuesthatmayarise.

6.Cloudtohosttrainingdata(Storage):Thissignifiesthecloudplatformorserviceprovidertaskedwithsecurelyhousingandmanagingtheextensivedatasetsrequisitefortraininglanguagemodels.Itentailsrobuststorageanddatamanagementcapabilitiestoaccommodatethevoluminousanddiversedatasetsfundamentalfornurturingandrefininglanguagemodels.

1.3.Model

Theconceptof"Model"inthecontextofMLreferstoamathematicalrepresentationoranalgorithmtrainedtomakepredictionsorperformaspecifictask.

Thechoiceoffoundationmodel,fine-tuningapproach,andthedecisiontouseopen-sourceor

closed-sourcemodelscansignificantlyaffectLLMs'capabilities,performance,anddeploymentflexibilitywithinvariousapplicationsanddomains.

Wedefinethefollowingmodelassetsinthissubsection:

●FoundationModel

●Fine-TunedModel

●OpenSourcevs.ClosedSourceModels

●Domain-SpecificModels

●Modelcards

1.FoundationModel:

TheFoundationModelisthebaseuponwhichfurtheradvancementsarebuilt.Thesemodelsaretypicallylarge,pre-trainedlanguagemodelsthatencapsulateabroadunderstandingoflanguage,obtainedfromextensiveexposuretounlabeledtextdatathroughself-supervisedlearningtechniques.Foundation

models,ingeneral,provideastartingpointforsubsequentfine-tuningandspecializationtocaterto

specifictasksordomains.Forsomeadvancedandinnovativefoundationmodels,anotherterm,

“Frontier

Model”

canbeusedtorepresentabrandnewfoundationmodelintheAIMarketplace.FromanAIperspective,sometimestheterm“BaseModel''representsfoundationmodelsintheapplicationtechnologystacks.

2.Fine-TunedModel:

DerivedfromtheFoundationModel,theFine-TunedModelundergoesrefinementandadaptationto

catertospecifictasksordomains.Throughtheprocessoffine-tuning,theparametersofthefoundationmodelareupdatedutilizingsupervisedlearningtechniquesandtask-specificlabeleddata.Thisiterativeprocessenablesthemodeltoenhanceitsperformanceontargettasksordomainswhileretainingthe

foundationalknowledgeandcapabilitiesinheritedfromtheFoundationModel.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.10

3.Open-Sourcevs.Closed-SourceModels:

Thisdichotomypertainstotheaccessibilityandlicensingofamodel'ssourcecode,modelweights,andassociatedartifacts.Open-sourcemodelsmayreleasesomeoralloftheirtrainingdataandsourcecode,datausedforthemodeldevelopment,modelarchitecture,weights,andtoolstothepublicunder

open-sourcelicenses,grantingfreeusagewithspecifictermsandconditions.However,closed-sourcemodelsmaintainproprietarystatus,withholdingtheirsourcecode,weights,andimplementationdetailsfromthepublicdomain,oftenmotivatedbyintellectualpropertyprotectionorcommercialinterests.

Closed-sourcemodelsthatallowuserstoaccessthemodelsforfinetuningorinferencepurposesarecalledOpenaccessmodels.

Thesemodelassetscollectivelyformthebackboneofmodeldevelopment,fosteringinnovation,adaptability,andaccessibilitywithinGenAI.

4.Domain-SpecificModels:

Domain-specificmodelsrefertomachinelearningmodelsthataredesignedandtrainedtoexcelonspecificdomainknowledge,suchasfinancial,medicines,andcoding.

5.Modelcards:

Thecharacteristicsofmodelscanbedescribedusingmodelcards.ModelcardsarefilesthatmaintainthecontextofthemodelwhichisessentialforGovernanceandmakingsureAImodelscanbeusedcorrectly.Modelcards2consistofmodelcontextdetailslikeownership,performancecharacteristics,datasetsthemodelistrainedon,orderoftrainingetc.Thisalsohelpswithtraceability,lineageandunderstandingthebehaviorofthemodel.Modelcardsneedtobecontinuouslymaintainedandupdatedasthecontext

metadatachanges.[CSA,2024]

Moredetailsofmodelcardscanbefound,forexample,atthe

HuggingFace

platform,wherethemachinelearningcommunitycollaboratesonmodels,datasets,andapplications.

1.4.OrchestratedServices

TheseservicesencompassarangeofcomponentsandfunctionalitiesthatenabletheefficientandsecureoperationofLLMs.

ThefollowingisthelistofOrchestratedServicesAssets:

●CachingServices

●SecurityGateways(LLMGateways)

●DeploymentServices

●MonitoringServices

●OptimizationServices

●Plug-insforSecurity

●Plug-insforCustomizationandIntegration

●LLMGeneralAgents

2Formoredetailson‘Modelcards’pleaseconsultthe‘AIModelRiskManagementFramework’ofthe

AIRiskandTechnology

workinggroup

.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.11

Definitionandsignificanceofeachoftheabovelistedassetswithinthecontextoforchestratedservicesfollowsbelow.

1.CachingServices:

CachingServicesrefertosystemsorcomponentsthatfacilitatethecachingofmodelpredictions,inputs,orotherdatatoenhanceperformancebyreducingredundantcomputations.Bytemporarilystoring

frequentlyaccesseddata,cachingserviceshelpminimizeresponsetimesandalleviatecomputationalstrainonLLMs.

2.SecurityGateways(LLMGateways):

SecurityGateways,alsoknownasLLMGateways,arespecializedcomponentsthatserveas

intermediariesbetweenLLMsandexternalsystems.Thesegatewaysbolstersecuritybyimplementingaccesscontrolmeasures,inputvalidation,filteringmaliciouscontent(suchaspromptinjections),

PII/privacyinformation,andsafeguardsagainstpotentialthreatsormisuse,ensuringtheintegrityandconfidentialityofdataprocessedbyLLMs.

3.DeploymentServices:

DeploymentServicesstreamlinethedeploymentandscalingofLLMsacrossdiverseenvironments,includingcloudplatformsandon-premisesinfrastructure.Theseservicesautomatedeployment

processes,facilitateversionmanagement,andoptimizeresourceallocationtoensureefficientandseamlessLLMdeployment.

4.MonitoringServices:

MonitoringServicesarepivotalinoverseeingLLMsecurity,performance,health,andusage.These

servicesemploymonitoringtoolsandtechniquestogatherreal-timeinsights,detectanomalies,misuse(suchaspromptinjections)andissuealerts,enablingsecurity,proactivemaintenance,andtimely

interventiontoupholdtheoptimaloperationofLLMs.

5.OptimizationServices:

OptimizationServicesaregearedtowardsoptimizingtheperformanceandresourceutilizationofLLMs.Theseservicesemployarangeoftechniquessuchasmodelquantization,pruning,efficientinference

strategiestoenhanceLLMefficiency,reductionofcomputationaloverhead,andimprovementofoverallperformanceacrossdiversedeploymentscenarios.

6.Plug-insforSecurity:

Securityplug-insextendLLMsecuritybyprovidingdataencryption,accesscontrolmechanisms,threatdetectioncapabilities,andcomplianceenforcementmeasures,thusincreasingcyberresiliency.

7.Plug-insforCustomizationandIntegration:

Plug-insforCustomizationandIntegrationenablethecustomizationofLLMbehaviorandseamless

integrationwithothersystems,applications,ordatasources.Theseplug-insprovideflexibilityintailoring

LLMfunctionalitiestospecificusecasesordomainsandfacilitateinteroperabilitywithexistinginfrastructure,fosteringenhancedversatilityandutilityofLLMdeployments.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.12

8.LLMGeneralAgents:

LLMGeneralAgentsareintelligentagentsorcomponentscollaboratingwithLLMstoaugmenttheirfunctionalitiesandcapabilities.Theseagentsmayperformvarioustasks,suchas

●planning,

●reflection,

●functioncalling,

●monitoring,

●dataprocessing,

●explainability,

●optimization,

●scaling,andcollaboration,

●andenhancingtheversatilityandadaptabilityofLLMdeploymentsindiverseoperationalcontexts.

1.5.AIApplications

AIapplicationshavebecomeubiquitous,permeatingvariousfacetsofourdailylivesandbusiness

operations.Fromcontentgenerationtolanguagetranslationandbeyond,AIapplicationsfueledbyLLMshaverevolutionizedindustriesandreshapedhowweinteractwithinformationandtechnology.However,withtheproliferationofAIapplicationscomestheimperativeneedforeffectivecontrolframeworksto

governtheirdevelopment,deployment,andusage.

AIapplicationsrepresentthepinnacleofinnovation,offeringmanycapabilitiesthatcatertodiverse

businessdomainsandusecases.TheseapplicationsleveragethepowerofLLMstodecipherandprocessnaturallanguageinputs,enablingfunctionalitiessuchascontentgeneration,questionanswering,

sentimentanalysis,languagetranslation,andmore.Essentially,AIapplicationsserveastheinterface

throughwhichusersinteractwiththeunderlyingintelligenceofLLMs,facilitatingseamlesscommunicationandtaskautomationacrossvariousdomains.

AsdownstreamapplicationsofLLMs,AIapplicationsareoneofthemostimportantassetstoconsiderinanAIcontrolframework.TheyrepresentthedirecttouchpointbetweenLLMtechnologyandend-users,shapinghowusersperceiveandinteractwithAIsystems.Assuch,AIapplicationshavethepotentialtoamplifythebenefitsorrisksassociatedwithLLMs.

AIapplicationscanhavesignificanteconomicimpacts.AsbusinessesincreasinglyrelyonAIapplicationstodriveinnovation,streamlineoperations,andgaincompetitiveadvantages,theresponsible

developmentanddeploymentoftheseapplicationsbecomecrucialformaintainingmarketintegrityandfosteringalevelplayingfield.

Giventheseconsiderations,anAIcontrolframeworkmustprioritizethegovernanceandoversightofAIapplications.ThisincludesestablishingguidelinesandstandardsforAIapplicationdevelopment,testing,deployment,operation,andmaintenance,ensuringcompliancewithrelevantregulations,andpromotingtransparencyandaccountabilitythroughouttheAIapplicationlifecycle.Additionally,theframework

shouldfacilitatecontinuousmonitoringandevaluationofAIapplications,enablingtimelyidentificationandmitigationofpotentialrisksorunintendedconsequences.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.13

ByprioritizingAIapplicationsintheAIcontrolframework,organizationscanproactivelyaddressthechallengesandrisksassociatedwithLLM-poweredapplicationswhileunlockingtheirtransformativepotentialtodriveinnovationandimprovelives.

AIapplicationcardsarefilesthatmaintaintheAIcontextoftheapplicationwhichisessentialfor

governanceoftheapplication.AIapplicationcardsconveytheAIdataoftheapplications,including

modelsused,datasetsused,applicationandAIusecases,applicationowners(seedifferentkindsof

ownersfromtheRACImodelinthenextsection),andguardians.AIapplicationcardsareaneasywayto

conveyandshareAIdataforapplications,tohelpAIgovernanceexecutives,AIcouncils,andregulatorstounderstandtheapplicationandtheAIituses.TheAIapplicationcardsmayinturnpointtomodeland

datacards.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.14

2.LLM-ServiceLifecycle

TheLLM-ServiceLifecycleoutlinesdistinctphases,eachcrucialinensuringtheservice'sefficiency,

reliability,andrelevancethroughoutitslifespan.Fromthepreparatorystagesofconceptualizationand

planningtotheeventualarchivinganddisposal,eachphaseisintricatelyintegratedintoacomprehensiveframeworkdesignedtoimproveservicedeliveryandmaintainalignmentwithevolvingneedsand

standards.Organizationscanmanageservicedevelopment,evaluation,deployment,delivery,andretirementthroughthisstructuredapproachwithclarityandeffectiveness.

DrawinguponemergingstandardslikeISO/IEC5338onAIsystemlifecycles,andreviewsfrom

organizationsliketheUK'sCentreforDataEthicsandInnovation(CDEI),thislifecyclecoverstheend-to-endprocess,fromearlypreparationanddesignthroughtraining,evaluation,deployment,operation,andeventuallyretirement.

Thefollowingisthehigh-levelbreakdownofthelifecyclewewilldefineinthissection.

●Preparation:

。Datacollection

。Datacuration

。Datastorage

。Resourceprovisioning。Teamandexpertise

●Development:

。Design。Training

。Keyconsiderationsduringdevelopment。Guardrails

●Evaluation/Validation:

。Evaluation

。Validation/RedTeaming。Re-evaluation

。Keyconsiderationsduringevaluation/validation

●Deployment:

。Orchestration

。AIServicessupplychain。AIapplications

●Delivery:

。Operations。Maintenance

。Continuousmonitoring。Continuousimprovement

©Copyright2024,CloudS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论