




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LargeLanguageModel(LLM)ThreatsTaxonomy
ThepermanentandofficiallocationfortheAIControlsFrameworkWorkingGroupis
/research/working-groups/ai-controls
©2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour
computer,view,print,andlinktotheCloudSecurityAllianceat
subject
tothefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)the
trademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas
permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.2
Acknowledgments
LeadAuthors
Reviewers
SiahBurke
PhilAlger
MarcoCapotondi
IlangoAllikuzhi
DanieleCatteddu
BakrAbdouh
KenHuang
VinayBansalVijayBolinaBrianBrinkley
Contributors
AnupamChatterjeeJasonClinton
MarinaBregkou
VidyaBalasubramanian
AlanCurranSandyDunnDavidGee
AvishayBar
ZackHamilton
MonicaChakrabortyAntonChuvakin
RicardoFerreiraAlessandroGrecoKrystalJackson
VicHargraveJerryHuang
RajeshKambleGianKapoorRicoKomenda
GianKapoor
VaniMittal
KushalKumar
AnkitaKumariYutaoMa
DannyManimboVishwasManralJesusLuna
MichaelRoza
LarsRuddigheit
JasonMorton
AmeyaNaik
GabrielNwajiakuMeghanaParwatePrabalPathak
RuchirPatwa
BrianPendletonKunalPradhan
DorSarig
Dr.MattRoldan
AmitSharma
RakeshSharmaKurtSeifried
CalebSima
EricTierling
JenniferToren
RobvanderVeerAshishVashishthaSounilYu
DennisXu
OmarSantos
Dr.JoshuaScarpino
NataliaSemenova
BhuvaneswariSelvaduraiJamillahShakoor
TalShapira
AkramSheriff
SrinivasTatipamula
Maria(MJ)SchwengerMahmoudZamani
RaphaelZimme
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.3
TableofContents
Acknowledgments 3
TableofContents 4
ObjectivesandScope 5
RelationshipwiththeCSAAIControlFramework 6
1.LargeLanguageModelAssets 7
1.1.DataAssets 7
1.2.LLM-OpsCloudEnvironment 9
1.3.Model 10
1.4.OrchestratedServices 11
1.5.AIApplications 13
2.LLM-ServiceLifecycle 15
2.1Preparation 16
2.2Development 17
2.3Evaluation/Validation 18
2.4Deployment 20
2.5Delivery 22
2.6ServiceRetirement 24
3.LLM-ServiceImpactCategories 26
4.LLMServiceThreatCategories 26
4.1.ModelManipulation 26
4.2.DataPoisoning 27
4.3.SensitiveDataDisclosure 27
4.4.ModelTheft 27
4.5.ModelFailure/Malfunctioning 27
4.6.InsecureSupplyChain 27
4.7.InsecureApps/Plugins 27
4.8.DenialofService(DoS) 28
4.9.LossofGovernance/Compliance 28
5.References/Sources 29
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.4
ObjectivesandScope
ThisdocumentwasauthoredbytheCloudSecurityAlliance(CSA)ArtificialIntelligence(AI)Controls
FrameworkWorkingGroup,withinthecontextoftheCSAAISafetyInitiative.Itestablishesacommon
taxonomyanddefinitionsforkeytermsrelatedtoriskscenariosandthreatstoLargeLanguageModels(LLMs).ThegoalistoprovideasharedlanguageandconceptualframeworktofacilitatecommunicationandalignmentwithintheIndustryandtosupportadditionalresearchwithinthecontextoftheCSAAI
SafetyInitiative.Morespecifically,thesedefinitionsandtaxonomyareintendedtoassisttheCSAAIControlWorkingGroupandtheCSAAITechnologyandRiskWorkingGroupintheirongoingefforts.
Inthiseffort,wefocusonthedefinitionofthefollowingelements(SeeFigure1):
●LLMAssets
●LLM-ServiceLifecycle
●LLM-ServiceImpactCategories
●LLM-ServiceThreatCategories
Figure1:CSALLMThreatTaxonomy
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.5
Thesedefinitionsandtaxonomyreflectanextensivereviewoftheavailableliterature,aswellasmeetingsanddiscussionsamongWorkingGroupmembersandco-chairs.Throughthiscollaborativeexercise,a
strongconsensusemerged,establishingafoundationalsetofcommonterminologiesguidingourcollectiveefforts.
Thisdocumentdrawsinspirationfromnumerousindustryreferencescitedattheendofthedocument,andmostnotablyfromNISTAI100-2E2023titled“AdversarialMachineLearning:ATaxonomyand
TerminologyofAttacksandMitigations”[Barrettetal.,2023].
Withthesedefinitionsandtaxonomy,conversationsregardingtheevaluationofAIthreatsandrisks,
developingappropriatecontrolmeasures,andgoverningresponsibleAIdevelopmentcanadvancewithgreaterclarityandconsistencyacrossdiverseCSAgroupsandamongstakeholders.Establishinga
commonnomenclaturereducesconfusion,helpsconnectrelatedconcepts,andfacilitatesmoreprecisedialogue.ThisdocumentconsolidateskeytermsintoacentralreferenceservingthepurposeofaligningboththeAIControlWorkingGroupandtheAITechandRiskWorkingGroupwithintheCSAAISafetyInitiative.
RelationshipwiththeCSAAIControlFramework
TheCSAAIControlFrameworkWorkingGroup’sgoalistodefineaframeworkofcontrolobjectivestosupportorganizationsintheirsecureandresponsibledevelopment,management,anduseofAI
technologies.TheframeworkwillassistinevaluatingrisksanddefiningcontrolsrelatedtoGenerativeAI(GenAI),particularlyLLMs.
Thecontrolobjectiveswillcoveraspectsrelatedtocybersecurity.Additionally,itwillcoveraspectsrelatedtosafety,privacy,transparency,accountability,andexplainabilityasfarastheyrelatetocybersecurity.
PleasereviewCSA’sblogposttoexplorethedifferencesandcommonalitiesbetween
AISafetyandAI
Security
.
Byfocusingonthebusiness-to-businessimplications,theCSAAIControlFrameworkcomplements
governmentefforts1inprotectingnationalsecurity,citizen’srightsandlegalenforcement,advocatingforsecureandethicalAIapplicationsthatcomplywithglobalstandardsandregulations.
1E.g.EUAIAct,U.S.ArtificialIntelligenceSafetyInstitute(USAISI),etc.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.6
1.LargeLanguageModelAssets
ThissectiondefinesthefoundationalcomponentsessentialforimplementingandmanagingLLM
systems,fromthedetaileddataassetscrucialfortrainingandfine-tuningthesemodels,tothecomplexLLM-Opsenvironment,ensuringseamlessdeploymentandoperationofAIsystems.Furthermore,this
sectionclarifiestheLLM'ssignificance,architecture,capabilities,andoptimizationtechniques(seeFigure2).Additionally,thissectionexploresthevitalaspectofassetprotection,leveragingtheResponsible,
Accountable,Consulted,Informed(RACI)matrixtodelineateresponsibilitieswithinbothopen-sourcecommunitiesandorganizationstowardsimplementationofAIservices.
Figure2:LLMAssets
1.1.DataAssets
InLLMservices,manyassetsplayanintegralroleinshapingaservice'sefficacyandfunctionality.Data
assetsareattheforefrontoftheseassetsandserveasthecornerstoneofLLMoperations.ThelistbelowdescribesthetypicalrangeofassetsconstitutinganLLMService:
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.7
●Datausedfortraining,benchmarking,testing,andvalidation
●Datausedforfine-tunetraining
●DatausedforRetrieval-AugmentedGeneration(RAG)
●Datacardsthatdefinethemetadataofthedatainuse
●Inputdata
●Usersessiondata
●Modeloutputdata
●Modelparameters(weights)
●Modelhyperparameters
●LogdatafromLLMsystems
Thefollowingarethedefinitionsoftheseassets:
1.Training,benchmarking,testing,andvalidationdata:Thisencompassesthedatasetusedtotrain,benchmark,test,andvalidatethemodel,consistingoftextsourcesfromwhichthemodelderivesinsightsintolanguagepatterns,andsemanticsthatareimperativeforqualityofthemodel.Eachdataelementis
treatedandmanagedindividually.
2.Fine-tunetrainingdata:Additionaldataisemployedtofine-tuneorfurtherpre-trainthemodelpost-initialtraining.Thisfacilitatesadjustmentstothemodel’sparameterstoalignmorecloselywithspecificusecasesordomains,enhancingitsadaptabilityandaccuracy.
3.Retrieval-AugmentedGeneration(RAG):IntegratesexternalknowledgebaseswithLLMs.By
retrievingrelevantinformationbeforegeneratingresponses,RAGenablesLLMstoleveragebothmodelknowledgeandexternalknowledgeeffectively.RAGcanretrievesupplementarydatafromvarious
sources,includinginternalsystems,andpublicsources,suchastheInternet,enrichinginputpromptsandrefiningthemodel'scontextualunderstandingtoproducehigher-qualityresponses.
4.Datacards:MetadataofthedatasetsusedforvariouspurposesinLLMneedstobemaintained.ThishelpsgovernAIdataandprovideslineage,traceability,ownership,datasensitivity,andcompliance
regimesforeverydatasetused.Storingandthencontinuouslyupdatingdatacardsasthedata,ownership,orrequirementschangeisessentialtomaintaincomplianceandvisibility.
5.Inputdata(system-levelprompt):Theinputdataisprovidedtosetthecontextandboundaries
aroundLLMsystems.Thesedatasetsareadditionallyusedtosettopicboundariesandguardrailsincaseofadversarialgeneration.
6.Usersessiondata:InformationamassedduringuserinteractionswiththeAIsystems,encompassinginputqueries,model-generatedresponses,andanysupplementarycontextprovidedbyusers,facilitatingpersonalizedinteractions.
7.Modeloutputdata:Theresultantoutputgeneratedbythemodelinresponsetoinputprompts,encompassingtextresponses,predictions,orotherformsofprocesseddata,reflectiveofthemodel'scomprehensionandinferencecapabilities.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.8
8.Modelparameters(weights):Internalparametersorweightsacquiredbythemodelduringtraining,delineatingitsbehaviorandexertingaprofoundinfluenceonitscapacitytogenerateandcontextuallyrelevantresponses.
9.Modelhyperparameters:Configurationsorsettingsspecifiedduringmodeltraining,including
parameterssuchaslearningrate,batchsize,orarchitecturechoices,arepivotalinshapingthemodel'soverallperformanceandbehavior.
10.Logdata:Recordeddataencapsulatingvariouseventsandinteractionsduringthemodel'soperation,
includinginputprompts,modelresponses,performancemetrics,andanyencounterederrorsoranomalies,instrumentalformonitoringandrefiningthemodel'sfunctionalityandperformance.
1.2.LLM-OpsCloudEnvironment
TheLLM-OpsEnvironmentencompassestheinfrastructureandprocessesinvolvedinthedeploymentandoperationofLLMs.Thefollowingbulletpointsarethekeytermsassociatedwiththisenvironment:
●Cloudrunningthetrainingenvironment
●Cloudrunningthemodelinferencepoint
●CloudrunningtheAIapplications
●Hybridandmulti-cloudinfrastructure
●Securityofthedeploymentenvironment
●Continuousmonitoring
●Cloudtohosttrainingdata(Storage)
ThesignificanceandessenceofeachoftheaboveassetwithintheframeworkoftheLLM-OpsEnvironmentisdescribedbelow:
1.Cloudrunningthetrainingenvironment:Thisdenotesthecloudplatformorserviceproviderentrustedwithhostingandmanagingthecomputationalresources,storagefacilities,andancillaryinfrastructurepivotalfortrainingLLMs.Itservesasthedevelopmentspacewheremodelsundergoiterativerefinementandenhancement.
2.Cloudrunningthemodelinferencepoint:Thisencapsulatesthecloudplatformorserviceprovidertaskedwithhostingandadministeringthecomputationalresources,storagesolutions,andassociated
infrastructureindispensablefordeployingLLMsandfacilitatinginferenceprocesses.Itenablesthemodeltogenerateresponsesbasedonuserinputs,ensuringseamlessinteractionandresponsiveness.
3.Public/Private/HybridCloudRunningtheAIapplications:ThisreferstothecloudplatformorserviceproviderentrustedwithhostingandoverseeingtheinfrastructureessentialforrunningAI
applicationsorAIservices,harnessingthecapabilitiesoftrainedlanguagemodels.ItservesastheoperationalhubwhereAI-drivenapplicationsleveragetheinferenceprowessofmodelstodelivervalue-addedfunctionalitiesandservicestoend-users.
4.Securityofthedeploymentenvironment:ThisencompassesthearrayofmechanismsandpoliciesimplementedtogovernandfortifyaccesstotheassortedcomponentsoftheLLM-OpsEnvironment.It
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.9
encompassesIdentityandAccessManagement(IAM)protocolsandnetworksecuritymeasures,safeguardingtheintegrityandconfidentialityofcriticalassetsandfunctionalities.
5.Continuousmonitoring:ThisdenotestheongoingprocessofvigilantlyscrutinizingtheLLM-OpsEnvironment'sperformance,securityposture,andoverallwell-being.Itencompassesthevigilant
surveillanceofthetrainingenvironment,inferenceendpoint,andapplicationcomponents,ensuringoptimalfunctionalitywhilepromptlyidentifyingandremedyinganyanomaliesorissuesthatmayarise.
6.Cloudtohosttrainingdata(Storage):Thissignifiesthecloudplatformorserviceprovidertaskedwithsecurelyhousingandmanagingtheextensivedatasetsrequisitefortraininglanguagemodels.Itentailsrobuststorageanddatamanagementcapabilitiestoaccommodatethevoluminousanddiversedatasetsfundamentalfornurturingandrefininglanguagemodels.
1.3.Model
Theconceptof"Model"inthecontextofMLreferstoamathematicalrepresentationoranalgorithmtrainedtomakepredictionsorperformaspecifictask.
Thechoiceoffoundationmodel,fine-tuningapproach,andthedecisiontouseopen-sourceor
closed-sourcemodelscansignificantlyaffectLLMs'capabilities,performance,anddeploymentflexibilitywithinvariousapplicationsanddomains.
Wedefinethefollowingmodelassetsinthissubsection:
●FoundationModel
●Fine-TunedModel
●OpenSourcevs.ClosedSourceModels
●Domain-SpecificModels
●Modelcards
1.FoundationModel:
TheFoundationModelisthebaseuponwhichfurtheradvancementsarebuilt.Thesemodelsaretypicallylarge,pre-trainedlanguagemodelsthatencapsulateabroadunderstandingoflanguage,obtainedfromextensiveexposuretounlabeledtextdatathroughself-supervisedlearningtechniques.Foundation
models,ingeneral,provideastartingpointforsubsequentfine-tuningandspecializationtocaterto
specifictasksordomains.Forsomeadvancedandinnovativefoundationmodels,anotherterm,
“Frontier
Model”
canbeusedtorepresentabrandnewfoundationmodelintheAIMarketplace.FromanAIperspective,sometimestheterm“BaseModel''representsfoundationmodelsintheapplicationtechnologystacks.
2.Fine-TunedModel:
DerivedfromtheFoundationModel,theFine-TunedModelundergoesrefinementandadaptationto
catertospecifictasksordomains.Throughtheprocessoffine-tuning,theparametersofthefoundationmodelareupdatedutilizingsupervisedlearningtechniquesandtask-specificlabeleddata.Thisiterativeprocessenablesthemodeltoenhanceitsperformanceontargettasksordomainswhileretainingthe
foundationalknowledgeandcapabilitiesinheritedfromtheFoundationModel.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.10
3.Open-Sourcevs.Closed-SourceModels:
Thisdichotomypertainstotheaccessibilityandlicensingofamodel'ssourcecode,modelweights,andassociatedartifacts.Open-sourcemodelsmayreleasesomeoralloftheirtrainingdataandsourcecode,datausedforthemodeldevelopment,modelarchitecture,weights,andtoolstothepublicunder
open-sourcelicenses,grantingfreeusagewithspecifictermsandconditions.However,closed-sourcemodelsmaintainproprietarystatus,withholdingtheirsourcecode,weights,andimplementationdetailsfromthepublicdomain,oftenmotivatedbyintellectualpropertyprotectionorcommercialinterests.
Closed-sourcemodelsthatallowuserstoaccessthemodelsforfinetuningorinferencepurposesarecalledOpenaccessmodels.
Thesemodelassetscollectivelyformthebackboneofmodeldevelopment,fosteringinnovation,adaptability,andaccessibilitywithinGenAI.
4.Domain-SpecificModels:
Domain-specificmodelsrefertomachinelearningmodelsthataredesignedandtrainedtoexcelonspecificdomainknowledge,suchasfinancial,medicines,andcoding.
5.Modelcards:
Thecharacteristicsofmodelscanbedescribedusingmodelcards.ModelcardsarefilesthatmaintainthecontextofthemodelwhichisessentialforGovernanceandmakingsureAImodelscanbeusedcorrectly.Modelcards2consistofmodelcontextdetailslikeownership,performancecharacteristics,datasetsthemodelistrainedon,orderoftrainingetc.Thisalsohelpswithtraceability,lineageandunderstandingthebehaviorofthemodel.Modelcardsneedtobecontinuouslymaintainedandupdatedasthecontext
metadatachanges.[CSA,2024]
Moredetailsofmodelcardscanbefound,forexample,atthe
HuggingFace
platform,wherethemachinelearningcommunitycollaboratesonmodels,datasets,andapplications.
1.4.OrchestratedServices
TheseservicesencompassarangeofcomponentsandfunctionalitiesthatenabletheefficientandsecureoperationofLLMs.
ThefollowingisthelistofOrchestratedServicesAssets:
●CachingServices
●SecurityGateways(LLMGateways)
●DeploymentServices
●MonitoringServices
●OptimizationServices
●Plug-insforSecurity
●Plug-insforCustomizationandIntegration
●LLMGeneralAgents
2Formoredetailson‘Modelcards’pleaseconsultthe‘AIModelRiskManagementFramework’ofthe
AIRiskandTechnology
workinggroup
.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.11
Definitionandsignificanceofeachoftheabovelistedassetswithinthecontextoforchestratedservicesfollowsbelow.
1.CachingServices:
CachingServicesrefertosystemsorcomponentsthatfacilitatethecachingofmodelpredictions,inputs,orotherdatatoenhanceperformancebyreducingredundantcomputations.Bytemporarilystoring
frequentlyaccesseddata,cachingserviceshelpminimizeresponsetimesandalleviatecomputationalstrainonLLMs.
2.SecurityGateways(LLMGateways):
SecurityGateways,alsoknownasLLMGateways,arespecializedcomponentsthatserveas
intermediariesbetweenLLMsandexternalsystems.Thesegatewaysbolstersecuritybyimplementingaccesscontrolmeasures,inputvalidation,filteringmaliciouscontent(suchaspromptinjections),
PII/privacyinformation,andsafeguardsagainstpotentialthreatsormisuse,ensuringtheintegrityandconfidentialityofdataprocessedbyLLMs.
3.DeploymentServices:
DeploymentServicesstreamlinethedeploymentandscalingofLLMsacrossdiverseenvironments,includingcloudplatformsandon-premisesinfrastructure.Theseservicesautomatedeployment
processes,facilitateversionmanagement,andoptimizeresourceallocationtoensureefficientandseamlessLLMdeployment.
4.MonitoringServices:
MonitoringServicesarepivotalinoverseeingLLMsecurity,performance,health,andusage.These
servicesemploymonitoringtoolsandtechniquestogatherreal-timeinsights,detectanomalies,misuse(suchaspromptinjections)andissuealerts,enablingsecurity,proactivemaintenance,andtimely
interventiontoupholdtheoptimaloperationofLLMs.
5.OptimizationServices:
OptimizationServicesaregearedtowardsoptimizingtheperformanceandresourceutilizationofLLMs.Theseservicesemployarangeoftechniquessuchasmodelquantization,pruning,efficientinference
strategiestoenhanceLLMefficiency,reductionofcomputationaloverhead,andimprovementofoverallperformanceacrossdiversedeploymentscenarios.
6.Plug-insforSecurity:
Securityplug-insextendLLMsecuritybyprovidingdataencryption,accesscontrolmechanisms,threatdetectioncapabilities,andcomplianceenforcementmeasures,thusincreasingcyberresiliency.
7.Plug-insforCustomizationandIntegration:
Plug-insforCustomizationandIntegrationenablethecustomizationofLLMbehaviorandseamless
integrationwithothersystems,applications,ordatasources.Theseplug-insprovideflexibilityintailoring
LLMfunctionalitiestospecificusecasesordomainsandfacilitateinteroperabilitywithexistinginfrastructure,fosteringenhancedversatilityandutilityofLLMdeployments.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.12
8.LLMGeneralAgents:
LLMGeneralAgentsareintelligentagentsorcomponentscollaboratingwithLLMstoaugmenttheirfunctionalitiesandcapabilities.Theseagentsmayperformvarioustasks,suchas
●planning,
●reflection,
●functioncalling,
●monitoring,
●dataprocessing,
●explainability,
●optimization,
●scaling,andcollaboration,
●andenhancingtheversatilityandadaptabilityofLLMdeploymentsindiverseoperationalcontexts.
1.5.AIApplications
AIapplicationshavebecomeubiquitous,permeatingvariousfacetsofourdailylivesandbusiness
operations.Fromcontentgenerationtolanguagetranslationandbeyond,AIapplicationsfueledbyLLMshaverevolutionizedindustriesandreshapedhowweinteractwithinformationandtechnology.However,withtheproliferationofAIapplicationscomestheimperativeneedforeffectivecontrolframeworksto
governtheirdevelopment,deployment,andusage.
AIapplicationsrepresentthepinnacleofinnovation,offeringmanycapabilitiesthatcatertodiverse
businessdomainsandusecases.TheseapplicationsleveragethepowerofLLMstodecipherandprocessnaturallanguageinputs,enablingfunctionalitiessuchascontentgeneration,questionanswering,
sentimentanalysis,languagetranslation,andmore.Essentially,AIapplicationsserveastheinterface
throughwhichusersinteractwiththeunderlyingintelligenceofLLMs,facilitatingseamlesscommunicationandtaskautomationacrossvariousdomains.
AsdownstreamapplicationsofLLMs,AIapplicationsareoneofthemostimportantassetstoconsiderinanAIcontrolframework.TheyrepresentthedirecttouchpointbetweenLLMtechnologyandend-users,shapinghowusersperceiveandinteractwithAIsystems.Assuch,AIapplicationshavethepotentialtoamplifythebenefitsorrisksassociatedwithLLMs.
AIapplicationscanhavesignificanteconomicimpacts.AsbusinessesincreasinglyrelyonAIapplicationstodriveinnovation,streamlineoperations,andgaincompetitiveadvantages,theresponsible
developmentanddeploymentoftheseapplicationsbecomecrucialformaintainingmarketintegrityandfosteringalevelplayingfield.
Giventheseconsiderations,anAIcontrolframeworkmustprioritizethegovernanceandoversightofAIapplications.ThisincludesestablishingguidelinesandstandardsforAIapplicationdevelopment,testing,deployment,operation,andmaintenance,ensuringcompliancewithrelevantregulations,andpromotingtransparencyandaccountabilitythroughouttheAIapplicationlifecycle.Additionally,theframework
shouldfacilitatecontinuousmonitoringandevaluationofAIapplications,enablingtimelyidentificationandmitigationofpotentialrisksorunintendedconsequences.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.13
ByprioritizingAIapplicationsintheAIcontrolframework,organizationscanproactivelyaddressthechallengesandrisksassociatedwithLLM-poweredapplicationswhileunlockingtheirtransformativepotentialtodriveinnovationandimprovelives.
AIapplicationcardsarefilesthatmaintaintheAIcontextoftheapplicationwhichisessentialfor
governanceoftheapplication.AIapplicationcardsconveytheAIdataoftheapplications,including
modelsused,datasetsused,applicationandAIusecases,applicationowners(seedifferentkindsof
ownersfromtheRACImodelinthenextsection),andguardians.AIapplicationcardsareaneasywayto
conveyandshareAIdataforapplications,tohelpAIgovernanceexecutives,AIcouncils,andregulatorstounderstandtheapplicationandtheAIituses.TheAIapplicationcardsmayinturnpointtomodeland
datacards.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.14
2.LLM-ServiceLifecycle
TheLLM-ServiceLifecycleoutlinesdistinctphases,eachcrucialinensuringtheservice'sefficiency,
reliability,andrelevancethroughoutitslifespan.Fromthepreparatorystagesofconceptualizationand
planningtotheeventualarchivinganddisposal,eachphaseisintricatelyintegratedintoacomprehensiveframeworkdesignedtoimproveservicedeliveryandmaintainalignmentwithevolvingneedsand
standards.Organizationscanmanageservicedevelopment,evaluation,deployment,delivery,andretirementthroughthisstructuredapproachwithclarityandeffectiveness.
DrawinguponemergingstandardslikeISO/IEC5338onAIsystemlifecycles,andreviewsfrom
organizationsliketheUK'sCentreforDataEthicsandInnovation(CDEI),thislifecyclecoverstheend-to-endprocess,fromearlypreparationanddesignthroughtraining,evaluation,deployment,operation,andeventuallyretirement.
Thefollowingisthehigh-levelbreakdownofthelifecyclewewilldefineinthissection.
●Preparation:
。Datacollection
。Datacuration
。Datastorage
。Resourceprovisioning。Teamandexpertise
●Development:
。Design。Training
。Keyconsiderationsduringdevelopment。Guardrails
●Evaluation/Validation:
。Evaluation
。Validation/RedTeaming。Re-evaluation
。Keyconsiderationsduringevaluation/validation
●Deployment:
。Orchestration
。AIServicessupplychain。AIapplications
●Delivery:
。Operations。Maintenance
。Continuousmonitoring。Continuousimprovement
©Copyright2024,CloudS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全媒体运营师职场发展的趋势与方向:试题及答案
- 地理与文化多样性的关联-试题及答案
- 2024年证券市场基本知识试题及答案
- 2024年银行市场营销试题及答案
- 潮流计算机二级考试试题及答案
- 2024年陪诊师考试内容指引与试题及答案
- 2024年计算机二级考试关键点试题及答案
- 2025年-山东省建筑安全员B证考试题库及答案
- 提高考试实战能力的路径:监理工程师试题及答案
- 极端天气事件的地理特征研究试题及答案
- Moldflow模流分析基础教程 课件全套 第1-11章 注塑成型CAE技术概述-综合模流分析实例
- 市政道路工程工序表格清单
- 家庭-私有制和国家的起源课件
- 电工作业培训电气安全用具与安全标识教学课件
- NSR618RF-D60线路保护测控装置技术使用说明书
- 【科教版】五年级下册课件【【科教版】六年级下册2-5《相貌各异的我们》】
- FZ/T 25001-1992工业用毛毡
- 文化创意产品设计及案例PPT完整全套教学课件
- 工程开工令模板
- 初中生个人及家庭情况调查表
- 统编版高二选择性必修(中)《小二黑结婚》优秀公开课获奖教案优质公开课获奖教学设计
评论
0/150
提交评论