版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AIResilience:
ARevolutionaryBenchmarkingModelforAISafety
ThepermanentandofficiallocationfortheAIGovernanceandComplianceWorkingGroupis
/research/working-groups/ai-governance-compliance
©2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour
computer,view,print,andlinktotheCloudSecurityAllianceat
subjectto
thefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)thetrademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas
permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.2
Acknowledgments
LeadAuthors
Dr.ChantalSpleiss
Contributors
RomeoAyalin
FilipChyla
BeckyGaylord
FrederickHanigRockyHeckmanHadirLabib
LarsRuddikeit
AlexSharpe
AshishVashishtha
Reviewers
SounilYu
DebjyotiMukherjeeMichaelRoza
PeterVentura
UdithWickramasuriyaGovindarajPalanisamyMadhaviNajana
RakeshSharmaDavideScatto
PareshPatel
PiradeepanNagarajanGaetanoBisaz
HongtaoHao,PhDEllePyle
GauravSingh
KenHuang
KennethT.Moras
TolgayKizilelma,PhDAkshayShetty
SauravBhattacharyaPejuOkpamen
GabrielNwajiaku
MeghanaParwate
AkshatVashishtha
HemmaPrafullchandraRenataBudko
DesmondFoo
ScottS.NewmanGianKapoor
ImranBanani
ElierCruz
MadhavChablani
CSAGlobalStaff
RyanGifford
StephenLumpe
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.3
TableofContents
Acknowledgments 3
TableofContents 4
ExecutiveSummary 6
Introduction 6
PartI:UnderstandingtheFoundations 7
Governancevs.Compliance 7
GovernanceandCompliance:aMovingTarget 7
TheLandscapeofAI 9
ABriefHistoryofAI 9
TheLandscapeofAI 10
MachineLearning(ML) 10
TinyMachineLearning(tinyML) 10
DeepLearning(AdvancedML) 10
GenerativeArtificialIntelligence(GenAI) 11
ArtificialGeneralIntelligence(AGI) 11
TheLandscapeofTrainingMethods 11
SupervisedLearning 11
UnsupervisedLearning 12
ReinforcedLearning 12
Semi-supervisedLearning 12
Self-supervisedLearning 12
FederatedLearning 12
TrainingMethodsRegulationsandEthicalConsiderations 13
Licensing,Patenting&CopyrightofAITechnology 14
PartII:Real-WorldCaseStudiesandIndustryChallenges 15
ABriefHistoryofAICaseStudies 15
2016:Microsoft’sTay 15
2018:Amazon’sAIRecruitingToolwasBiasedAgainstWomen 15
2019:TeslaAutopilotAccidents 15
2019:HealthcareAlgorithmRacialBias 16
2019:AllegationsofAppleCardBias 16
2020:BiasedOffenderAssessmentSystems 16
2022:AirCanadaBoundbyChatbot'sRefundPolicy 16
2023:Lawsuit:UnitedHealth'sFaultyAIDeniesElderlyCare 17
2024:Google'sGemini:ALessoninAIBias 17
Industries:Regulations&Challenges 17
Automotive 17
Aviation 18
CriticalInfrastructure&EssentialServices 19
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.4
TheDelicateBalance:Performancevs.Security 19
TheAchillesHeel:IoTandEdgeAI 19
TowardsaFuture-ProofInfrastructure 20
ContinuousEvolution:ThePathAhead 20
TheRoadAhead 20
CurrentInitiatives 21
USExecutiveOrder14110(Oct2023) 21
EUAIAct 21
OECDAIPrinciples 21
TheArtificialIntelligenceandDataAct(AIDA) 21
Defense 22
ArtificialIntelligenceandEmergingTechnologiesinDefense 22
HistoricalRoleofAIinDefense 22
AIRegulationsandDefense 23
Education 24
Finance 24
GuidanceonModelRiskManagementSR11-7 25
Healthcare 27
ExploringTrustworthyAIinHealthcare 28
TrustworthyAIinHealthcareLiterature 28
KeyRequirementsfor“TrustworthyAI” 29
ConsolidatedList 29
ConclusionsfromtheHealthcareLiterature 30
BiasinHealthcare 30
FurtherApplicationsofML/AIinHealthcare 31
PartIII:AIResilienceReframed:BenchmarkingModelInspiredbyEvolution 32
Comparison:BiologicalEvolutionvs.AIDevelopment 32
DiversityandResilienceinAISystems 33
TheChallengeofBenchmarkingAIResilience 33
AIResilience-SuggestedDefinition 33
ProposedAIResilienceScore 34
IntelligenceAwareness 35
FundamentalDifferencesinIntelligentSystems 35
Bibliography 36
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.5
ExecutiveSummary
A(r)evolutionaryAIbenchmarkingmodelisintroducedtonavigatethecomplexlandscapeofAI
governanceandcompliance.Revenue-drivenadvancementsoutpaceregulatoryeffortstoestablish
safeguards,oftenfallingshortinensuringthatAIsystemsaretrulyrobustandtrustworthy.Leadershipaddressesthiscriticalgapbyintroducinganovelbenchmarkingmodelinspiredbyprinciplesofevolutionandpsychologytoprioritizerobustnessalongsideperformance,empoweringexecutivestoproactivelyassesstheoverallqualityoftheirAIsystems.
DrawinglessonsfrompastAIfailuresincasestudiesandanalyzingindustrieslikeautomotive,aviation,criticalinfrastructureandessentialservices,defense,education,finance,andhealthcare,weprovidepracticalinsightsandactionableguidanceforbusinesses.Weadvocateforintegratingdiverse
perspectiveswithregulatoryguidelinestopropeltheindustrytowardsmoreethicalandtrustworthyAI
applications.Thefocusontrustworthinessiskeyforminimizingrisks,protectingreputation,andfosteringresponsibleAIinnovation,deployment,anduse.
Thisdocumentempowerskeydecisionmakers,includinggovernmentofficials,regulatorybodies,and
industryleaders,toestablishAIgovernanceframeworksthatensureethicalAIdevelopment,deployment,anduse.AnovelbenchmarkingmodelisintroducedtoassessAIquality,providingapracticaltoolfor
long-termsuccess.
Introduction
TherapidevolutionofArtificialIntelligence(AI)promisesunprecedentedadvances.However,asAI
systemsbecomeincreasinglysophisticated,theyalsoposeescalatingrisks.Pastincidents,frombiasedalgorithmsinhealthcaretomalfunctioningautonomousvehicles,starklyhighlighttheconsequencesofAIfailures.Currentregulatoryframeworksoftenstruggletokeeppacewiththespeedoftechnological
innovation,leavingbusinessesvulnerabletobothreputationalandoperationaldamage.
Inresponsetothesechallenges,thisdocumentaddressestheurgentneedforamoreholisticperspectiveonAIgovernanceandcompliance.We'llexplorethefoundationsofAI,examineissuesacrosscritical
industries,andprovidepracticalguidanceforresponsibleimplementation.Wepresentanovelapproachthatcomparesthe(r)evolutionofAIwithbiology,andintroducesathought-provokingconceptof
diversitytoenhancesafetyofAItechnology.Differencesinintelligenceandthesuccessfulinteractionofsuchsystemsarediscussed.Aninnovativebenchmarkingframeworkispresentedtoincreasethesafetyandreliabilityofthisdisruptivetechnology.
Thisapproachempowersdecision-makersandtechnicalteamsaliketoassessthesafetyand
trustworthinessofAIsystems.WeadvocateforintegratingdiverseperspectivesandregulatoryguidelinestofosterethicalAIinnovationandestablishstronggovernancepractices.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.6
PartI:UnderstandingtheFoundations
Governancevs.Compliance
Governanceandcomplianceareessentialaspectsoforganizationalmanagement,ensuringadherencetoregulations,ethicalprinciples,standards,andsustainabilitypracticesoutlinedinthebusinesscodeof
conduct.Alignmentwithaforementionedprinciplesandregulationsensureeffectivebusinesscontinuityandethicalpractice.
Governance
[1]
,whichreferstooverseeingandcontrollingsomething,isimplementedinatop-downapproach.Seniormanagementisresponsiblefordefiningstrategyandriskappetite,andestablishinga
governanceframeworkthroughpolicies,standards,and/orprocedures.Thesedirectivesshapetheorganization'soverarchingriskmanagementapproach,complianceobligations,anddecision-makingprocesses.Governancecreatesacultureofaccountability,transparency,ethicalbehavior,and
sustainabilitywhileprioritizingsecurityandprivacymeasuresacrossthecompany.
Contrarytothetop-downapproachofgovernance,Compliance
[2]
followsabottom-upapproach,whereemployeesatvariouslevelsimplementandadheretothegovernanceframeworkdefinedbysenior
managementtomeetregulatoryrequirements.Compliancefocusesonensuringadherencetolaws,
regulations,andindustrystandards,aswellasthegoverninginternalbusinesscodeofconduct.Itisa
crucialcomponentoforganizationalmanagementtoensurethattheorganizationoperateswithin
applicablelegalandregulatoryrequirements,acceptableethicalboundaries,andminimizedriskexposure.
GovernanceandCompliance:aMovingTarget
Whilegovernanceandcomplianceareclearlydefinedobjectives,theuseofanyAIchallengestraditionalapproaches.AIcanbeviewedfromvariousperspectives,suchasatechnology,asystemusingoneor
moremodels,abusinessapplication,orauserplatform.AIcanserveonesingle,oramultitudeof,end
users,anditcanbeusedbybusinesses,informationbrokers,orotherAItechnology,toperformtasks,
solveproblems,makedecisions,orinteractwiththeenvironment.Emergingbestpractices,standards,
andregulationssurroundingtheuseofAIcontinuetoevolve,makingitchallengingtohaveaconcretesetofcompliancerequirementstoimplementandmonitor.Forcompaniesconductinginternationalbusiness,thischallengegrowsexponentially.Mostregulationshaveoverlappingrequirementswithhardlyany
radicallynewpropositionstoimprovethesafetyofAIandthecurrentframeworkisbasedonthesegeneralrequirements.
●Humanoversight:EnsurethatAIsaresubjecttohumanoversightandcontrol,withmechanismsinplacetoenablehumaninterventionanddecision-makingwhennecessary.Humanoversight
mustbecoupledwithautomatedmonitoringastheprimarystep,withhumanoversightbeingcalledinforspecificallyidentifiedusecaseswherehumaninterventionisnecessary.Thismakesthisguidancescalableandpracticalapplicable.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.7
●Safetyandreliability:PrioritizesafetyandreliabilityinAItechnologytominimizetheriskofharmtoindividualsorsociety.Thisisachievedthroughrigoroustesting,validation,risk
assessmentprocesses,andtheimplementationofmechanismsinplaceforakill-switchorrecourseincaseoffailure.
●Ethicalconsiderations:EnsureAIadherestoethicalprinciples,respectshumanrights,andpromotesfairness.
●Dataprivacyandsecurity:Enhanceddataprotectionandsecuritymeasuresshouldbe
implementedtoprotectsensitiveinformationandprivacy,preventingunauthorizedaccessormisuseofdata.Duringthedesignphases,privacy-by-designandsecurity-by-designfocusonmitigatingrisksearlyintheprocess(reflectingshift-leftinDevSecOps).Thislimitsbolt-on
securityandunforeseenriskexposureinthefinalproduct.
●AIModelandDataConsiderations:
●Biasmitigation:AddressbiasesindataandalgorithmdesignandregularlymonitorandevaluateAIsystemsforbiasanddiscrimination.Biasisacomplextopicthatbalances
necessaryinformationandalgorithmswiththeriskofstereotypicclassification.
●Transparency:EnsuretransparencyinAIbyclearlyexplaininghowitworks,includingthealgorithmsandfactorsinfluencingtheirdecisions.ImplementingXAI(explainableAI)
[2]
,
[3]
helpstofostertrustandbuildthefoundationofinformeddecisionswhileuncoveringpossiblebias.Inhealthcare,thisiscrucialandacknowledged.Regardlessoftheindustry,theusershouldbeinformediftheoutputwasproducedbyAI.
●Consistency:ConsistentdataensuresthattheAImodellearnsfromaccurateand
reliableexamples.Thisiscrucialforthemodeltogeneratecorrectandusefuloutputs.Inconsistentorconflictingdatacanconfusethemodel,leadingtoinaccuraciesinthegeneratedtextorinformation.
●Accountability:Establishmechanismsforaccountabilityandresponsibilityinthedesign,development,deployment,anduseofAI,includingclearlinesofresponsibilityfor
addressinganyissuesthatmayarise.Currently,theresponsibilityforpreventingharmtotheend-userprimarilyfallsontheAIapplicationprovideralone.Additionalmeasures,
suchasmanualsor“modelcards”
[4]
andspecificusertraining,couldhighlightashared
responsibilitybetweentheproviderandtheenduserandoutlinethedegreeoftransparencythattheendusercanexpect.
●Robustness:DevelopAIthatiswelldesignedandresilienttoadversarialattacks,dataperturbations,andotherformsofinterferenceormanipulation.Thispaperproposesanewperspectivetoevaluaterobustnesstoenhanceglobalsafety.
●Compliancewithregulations:Ensurecompliancewithrelevantlaws,regulations,andstandardsgoverningthedevelopmentanddeploymentofAIapplicationsincluding,butnotlimitedto,dataprotectionalsoregardingthetradingofdata,privacy,andsafety.
AdoptinganapproachgroundedinsharedresponsibilityacrossthehighlycomplexsupplyandvaluechainiscrucialtoensuringthecreationofsafeandtrustworthyAI.Thisinvolvesatleastthetechnicalteam,thecomplianceteam,thelegalteamand,dependingonspecificfactors,manyotherteamsaswell.TheWhiteHouseMemorandumfrom28March2024
[5]
requeststhatallagenciesmustdesignateaChiefAIOfficer(CAIO)within60days.Thisroleallowsstrategicandpurposefulmanagementandalignmentofall
involvedteamstotransform“sharedresponsibility”intoatraceablemeasurement.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.8
TheLandscapeofAI
Inthischapter,anoverviewisgiventointroduceAIwithabriefhistory,AItechnologies,andtraining
methods.Todiscusstheimportanceofdataisbeyondthescopeofthisoverviewbutitisacknowledgedthatitisanextremelyimportanttopicandisaddressedin-depthbyotherCSAWorkgroups.
ABriefHistoryofAI
BelowaresomemilestonesofArtificialIntelligencelisted,notconsideringaspecificperspectivebutgivinganoverviewofthemajordevelopmentsinthisfield.
Figure1:HistoryofArtificialIntelligence
[6]
2018:BERT:IntroducedbyGoogle,thismodelrevolutionizedlanguageunderstanding.BERT'suseoftheTransformerarchitectureandpre-trainingonmassivetextdatasetsenabledittooutperformprevious
modelsinvariouslanguagetasks.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.9
2019:GTP-2with1.5billionparameters
2020:LLMswith175billion-530billionparameters
2021:LLMswithuptoatrillionparametersfocusingonimprovingefficiencyintrainingandhandlingcomplextaskswithadvancedreasoningandfactualaccuracy.
2022:ChatGTP-3goesviral
Beyondsize:researchersareworkingnowonefficiencyintraining,alignmentwithhuman’svalue,safetyandmultimodality(incorporatingimages,audio,andotherdatatypes).
ThisbriefhistoryofAIdemonstratestheevolutionfromthemostbasiccalculatortoGenAIwithArtificialGeneralIntelligencestillonthehorizon.
TheLandscapeofAI
DifferentAItechnologiesarepresentedanddiscussed.
MachineLearning(ML)
MachineLearningisabranchofAIandcomputersciencethatfocusesonusingdataandalgorithmstoimitatehumanlearning,graduallyimprovingamodel’saccuracy
[7]
.
TinyMachineLearning(tinyML)
TinyMachineLearningisbroadlydefinedasafieldofMachineLearningtechnologiesandapplicationsthatincludehardware(dedicatedintegratedcircuits),algorithms,andsoftwarecapableofperformingon-devicesensordataanalyticsatextremelylowpower,typicallyinthemWrangeandbelow,enablingavarietyofalways-onusecasesandtargetingbatteryoperateddevices
[8]
,suchasInternetofThings
(IoT)devices.
DeepLearning(AdvancedML)
DeepLearningisamethodinAIthatteachescomputerstoprocessdatainawaythatisinspiredbythehumanbrain.DeepLearningmodelscanrecognizecomplexpatternsinpictures,text,sounds,andotherdatatoproduceaccurateinsightsandpredictionsusingneuralnetworks.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.10
GenerativeArtificialIntelligence(GenAI)
GenerativeArtificialIntelligencereferstodeep-learningortransformermodelsthatcantakerawdataand“learn”togeneratestatisticallyprobableoutputswhenprompted.Unliketheaboveclassificatorymodelsthatareprimarilyusedforclassificationandpatternrecognitiontasks,GenerativeAImodelsareusedforsynthesisofdata,matchinghigh-orderpatternsoflearningdataand/orpredictiveanalytics.Atahigh
level,generativemodelsencodeasimplifiedrepresentationoftheirtrainingdataandpredictthenextsetsimilar,butnotidenticalto,theoriginaldata
[9]
.
ArtificialGeneralIntelligence(AGI)
ArtificialGeneralIntelligenceisatheoreticalformofAIusedtodescribeacertainmindsetofAI
development.Itinvolvesanintelligenceequal(orsuperior)tohumansandaself-awareconsciousnessthatcanlearnandsolvecomplexproblems,andplanforthefuture
[10]
.
TheLandscapeofTrainingMethods
ArtificialIntelligencecanbegroupedintothefollowingtypes
[11]
:
Figure2:TypesofMachineLearning
SupervisedLearning
SupervisedLearningisastyleofMachineLearningwherealgorithmslearnfrom“labeleddata”.Itisusedforclassificationandregressionproblems.“Labeleddata”providesknowninputsanddesiredoutputs,allowingthealgorithmtoidentifypatternsandbuildamodelforpredictingoutcomesonpreviously
unseendata.
Exampleforclassificationalgorithms:decisiontrees,randomforests,linearclassifiers,andsupportvectormachines.
Exampleforregressionalgorithms:linearregression,multivariateregression,regressiontrees,andlassoregression.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.11
UnsupervisedLearning
UnsupervisedLearningisastyleofMachineLearningwherealgorithmsanalyzeunlabeleddata.Thegoalistodiscoverhiddenpatterns,groupings,patterns,orinsightswithinthedatawithoutpredetermined
outcomes.Aproperlytrainedmodelisabletomakepredictionsusingunseendata.
Examplealgorithms:k-means,k-medoids,hierarchicalclustering,Apriori,andFPGrowth.
ReinforcedLearning
ReinforcedLearningisastyleofMachineLearningwhereanagentinteractswithanenvironmentand
learnsthroughtrialanderror.Theagentreceivesrewardsorpenaltiesbasedonitsactions,allowingittoadjustitsbehaviorandoptimizeitsdecision-makingprocessovertime.
Examplealgorithms:ReinforcedLearning,MarkovDecisionProcess,Q-learning,PolicyGradientMethod,andActor-Critic,butmanymoreexist.
Semi-supervisedLearning
Semi-supervisedLearningbridgesthegapbetweensupervisedandunsupervisedlearning.Itutilizesasmallamountoflabeleddataalongsidealargerpoolofunlabeleddata.Thisapproachisvaluablewhenobtaininglabeleddataiscostlyortime-consumingsinceitallowsthemodeltoleveragepatternsfoundwithintheunlabeleddataaswell.
Self-supervisedLearning
Self-supervisedLearningisaformofUnsupervisedLearningwherethemodelgeneratesitsownlabelsfromtherawinputdata.Itachievesthisthroughtechniqueslikepredictingmaskedwordsinasentenceor
predictingthenextframeinavideosequence.Thisallowsforlearningrobust,generalizablerepresentationsofdataevenwithouthuman-providedlabels.
FederatedLearning
FederatedLearningisanadvancedMachineLearningtechniquedesignedtotrainalgorithmsacross
decentralizeddevicesorserversholdinglocaldatasamples,withoutexchangingthem.Thismethod
addressessignificantconcernsrelatedtoprivacy,security,anddatacentralizationbykeepingsensitivedataontheuser'sdevice,ratherthantransferringthedatatoacentralserverforprocessing(Figure3).Thismethod,introducedin2016,allowsdataprivacytobepreservedtoagreaterextentbysharingonlyparameters,notdata.FederatedLearningoffersaframeworktojointlytrainaglobalmodelusingdata
setsstoredinseparateclients.Thisoffersagoodoptionforindustrieswhereprivacyiscrucial,asoriginaldataisconsideredimpossibletorecover
[12]
.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.12
Figure3:ArchitectureforaFederatedLearningsystem
[12]
Anotheradvantageofthismodel,notdiscussedintheabovepaper
[12]
,istheabilitytoleveragethe
“wisdomofthecrowd”
[13]
.Neuronsinthehumanbrainapplythisconcepttoproduceexactinformationfromnon-deterministicneuralprocesses.
Currently,FederatedLearningseemstohavethepotentialtointegrateprivacy,performance,androbustnessbasedondiversity.Thislearningmethodisnotdiscussedmuch,butitispromisingin
industriesorapplicationswheredataprivacyandconfidentialityareparamountandalsohelpsaddresstheissuesarounddataresidency.
However,therearealsopotentialprivacyconcernswithFederatedLearningincludingtheriskofmalicioususersdisruptingmodelaggregation,whichcanimpactmodelaccuracyorleadtoprivacydisclosures.
Attackscantargetmodelupdatessharedduringtraining,possiblyallowingfortheextractionofrawtrainingdata.Toaddresstheseconcerns,researchersproposeprivacy-preservingtechniqueslike
differentialprivacy,distributedencryption,andzero-knowledgeprooftosafeguarddataandfilteroutanomaliesfrommaliciousactors.FederatedLearning,likeanyotherlearningmethod,requiresthat
adequatecybersecuritymeasuresareinplace.
TrainingMethodsRegulationsandEthicalConsiderations
WhiletherearenospecificregulationsgoverningMLtraining,itisimpactedbythemajorregulatoryframeworks,includingtheGeneralDataProtectionRegulation(GDPR),theEUAIAct,andthe
OrganisationforEconomicCo-operationandDevelopment(OECD)principlesonAI.Further,regulationsgoverningMachineLearning(ML)andartificialintelligence(AI)trainingarerapidlyevolvingas
technologyadvancesandarecoveredin“
PrinciplestoPractice:ResponsibleAIinaDynamicRegulatory
Environment
”.Additionally,manygovernmentbodiesareactivelydevelopingregulationsandfacilitatingcooperativeindustryeffortstothesameeffect.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.13
RegulationsgoverningMachineLearning(ML)andartificialintelligence(AI)havesignificantimplicationsfordatamonetizationandtheuseofAItoguidebusinessdecisions.Theseeffectsmanifestinvarious
ways,includingoperationalchanges,strategicadjustments,andethicalconsiderations,aswellas
limits/requirementsondatacollectionanduse,bias,anddataquality.Certainplatforms,forexample,haveforbiddentheusageoftheirdataforAItrainingpurposes(suchasX:“crawlingorscrapingthe
Servicesinanyform,foranypurposewithoutourpriorwrittenconsentisexpresslyprohibited”
[14]
)orhavesolditunderalicensingagreement(suchasReddit
[15]
).
Meetingregulatoryrequirementscanintroducesignificantcompliancecosts,especiallyforbusinesses
operatingacrossmultiplejurisdictions.Despitethechallenges,regulationsalsoofferopportunities.
Businessesthatadeptlynavigatetheregulatorylandscapecandifferentiatethemselvesbyofferingmoresecure,transparent,andethicalAIsolutions.Thiscanappealtoincreasinglyprivacy-consciousconsumersandpartners,potentiallyopeningnewmarketsorcreatingstrongercustomerloyalty.
Licensing,Patenting&CopyrightofAITechnology
ManyMachineLearningframeworksandlibrariesfollowtheOpenSourceInitiativeLicensing,suchasApache2.0
[16]
orMIT
[17]
.Certainlicensingmightforbidcommercialuseoftheresultingapplication.
TheEuropeanPatentOffice’s(EPO)revisedGuidelinesforExamination
[18]
,
[19]
havebeenmadepublicandincludeafewsignificantchangestotheEPO’sprocedureforreviewinginnovationsinthedomainsofMLandAI.RecentamendmentsmandatethatapplicantsforAIorMLinventionsfurtherelucidate
mathematicaltechniquesandtraininginput/datainamannerthoroughenoughtoreplicatethetechnicalresultoftheinventionovertheentiretyoftheclaim.Thearticlecitedbelowstatesthat“caselawsuggeststhatthestructureofanyneuralnetworksused,theirtopology,activationfunctions,endconditions,and
learningmechanismareallrelevanttechnicaldetailsthatanapplicationmightneedtodisclose”.Thisarticle
[20]
summarizesfurtherimplicationsandexpoundsonthistopic.
OnJanuary23,2024,theJapanAgencyforCulturalAffairs(ACA)releaseditsdraft“ApproachtoAIandCopyright”forpubliccomment,toclarifyhowingestionandoutputofcopyrightedmaterialsinJapan
shouldbeconsidered.OnFebruary29,2024,afterconsideringnearly25,000comments,additional
changesweremade.Thisdocument,createdbyanACAcommittee,willlikelybeadoptedbytheACAinthenextfewweeks.Thisarticle
[21]
providesasummaryofthekeypointsofthedraftitselfandas
modified.
TherearedisputesaboutcopyrightinSingapore
[22]
;thisiscurrentlyaveryvolatilefield.Itisfurtheraddressedinalsoin“
PrinciplestoPractice:ResponsibleAIinaDynamicRegulatoryEnvironment
”.
©Copyright2024,CloudSecurityAlliance.Allrightsreserved.14
PartII:Real-WorldCaseStudiesandIndustryChallenges
Inthispart,afewindustr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年四川绵阳市游仙区人力资源和社会保障局事业单位招聘工作人员历年高频重点提升(共500题)附带答案详解
- 2025上半年江苏省无锡宜兴事业单位招聘91人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川省广元市昭化区部分事业单位考试招聘15人高频重点提升(共500题)附带答案详解
- 金融服务解决方案招投标模板
- 棚户区管网改造工程合同
- 宠物行业招投标管理规定
- 大数据平台建设项目招投标协议
- 高速公路服务区停电应急预案
- 2024南坊公务员楼房买卖合同含附属设施装修及车位购买优惠3篇
- 2024年度二零二四年创业投资辅导与融资服务合同3篇
- MOOC 信号与系统-北京邮电大学 中国大学慕课答案
- 计算书-过滤器(纤维)
- 《有机波谱分析》期末考试试卷及参考答案
- 地源热泵维修规程
- 双块式无砟轨道道床板裂纹成因分析应对措施
- FZ∕T 62044-2021 抗菌清洁巾
- 净水厂课程设计
- 全级老年大学星级学校达标评价细则
- 模具维护保养PPT课件
- 《新媒体文案写作》试卷4
- 【模板】OTS认可表格
评论
0/150
提交评论