AI弹性:AI安全革命性基准模型 AI Resilience A Revolutionary Benchmarking Model for AI Safety_第1页
AI弹性:AI安全革命性基准模型 AI Resilience A Revolutionary Benchmarking Model for AI Safety_第2页
AI弹性:AI安全革命性基准模型 AI Resilience A Revolutionary Benchmarking Model for AI Safety_第3页
AI弹性:AI安全革命性基准模型 AI Resilience A Revolutionary Benchmarking Model for AI Safety_第4页
AI弹性:AI安全革命性基准模型 AI Resilience A Revolutionary Benchmarking Model for AI Safety_第5页
已阅读5页,还剩80页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AIResilience:

ARevolutionaryBenchmarkingModelforAISafety

ThepermanentandofficiallocationfortheAIGovernanceandComplianceWorkingGroupis

/research/working-groups/ai-governance-compliance

©2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour

computer,view,print,andlinktotheCloudSecurityAllianceat

subjectto

thefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)thetrademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas

permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.2

Acknowledgments

LeadAuthors

Dr.ChantalSpleiss

Contributors

RomeoAyalin

FilipChyla

BeckyGaylord

FrederickHanigRockyHeckmanHadirLabib

LarsRuddikeit

AlexSharpe

AshishVashishtha

Reviewers

SounilYu

DebjyotiMukherjeeMichaelRoza

PeterVentura

UdithWickramasuriyaGovindarajPalanisamyMadhaviNajana

RakeshSharmaDavideScatto

PareshPatel

PiradeepanNagarajanGaetanoBisaz

HongtaoHao,PhDEllePyle

GauravSingh

KenHuang

KennethT.Moras

TolgayKizilelma,PhDAkshayShetty

SauravBhattacharyaPejuOkpamen

GabrielNwajiaku

MeghanaParwate

AkshatVashishtha

HemmaPrafullchandraRenataBudko

DesmondFoo

ScottS.NewmanGianKapoor

ImranBanani

ElierCruz

MadhavChablani

CSAGlobalStaff

RyanGifford

StephenLumpe

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.3

TableofContents

Acknowledgments 3

TableofContents 4

ExecutiveSummary 6

Introduction 6

PartI:UnderstandingtheFoundations 7

Governancevs.Compliance 7

GovernanceandCompliance:aMovingTarget 7

TheLandscapeofAI 9

ABriefHistoryofAI 9

TheLandscapeofAI 10

MachineLearning(ML) 10

TinyMachineLearning(tinyML) 10

DeepLearning(AdvancedML) 10

GenerativeArtificialIntelligence(GenAI) 11

ArtificialGeneralIntelligence(AGI) 11

TheLandscapeofTrainingMethods 11

SupervisedLearning 11

UnsupervisedLearning 12

ReinforcedLearning 12

Semi-supervisedLearning 12

Self-supervisedLearning 12

FederatedLearning 12

TrainingMethodsRegulationsandEthicalConsiderations 13

Licensing,Patenting&CopyrightofAITechnology 14

PartII:Real-WorldCaseStudiesandIndustryChallenges 15

ABriefHistoryofAICaseStudies 15

2016:Microsoft’sTay 15

2018:Amazon’sAIRecruitingToolwasBiasedAgainstWomen 15

2019:TeslaAutopilotAccidents 15

2019:HealthcareAlgorithmRacialBias 16

2019:AllegationsofAppleCardBias 16

2020:BiasedOffenderAssessmentSystems 16

2022:AirCanadaBoundbyChatbot'sRefundPolicy 16

2023:Lawsuit:UnitedHealth'sFaultyAIDeniesElderlyCare 17

2024:Google'sGemini:ALessoninAIBias 17

Industries:Regulations&Challenges 17

Automotive 17

Aviation 18

CriticalInfrastructure&EssentialServices 19

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.4

TheDelicateBalance:Performancevs.Security 19

TheAchillesHeel:IoTandEdgeAI 19

TowardsaFuture-ProofInfrastructure 20

ContinuousEvolution:ThePathAhead 20

TheRoadAhead 20

CurrentInitiatives 21

USExecutiveOrder14110(Oct2023) 21

EUAIAct 21

OECDAIPrinciples 21

TheArtificialIntelligenceandDataAct(AIDA) 21

Defense 22

ArtificialIntelligenceandEmergingTechnologiesinDefense 22

HistoricalRoleofAIinDefense 22

AIRegulationsandDefense 23

Education 24

Finance 24

GuidanceonModelRiskManagementSR11-7 25

Healthcare 27

ExploringTrustworthyAIinHealthcare 28

TrustworthyAIinHealthcareLiterature 28

KeyRequirementsfor“TrustworthyAI” 29

ConsolidatedList 29

ConclusionsfromtheHealthcareLiterature 30

BiasinHealthcare 30

FurtherApplicationsofML/AIinHealthcare 31

PartIII:AIResilienceReframed:BenchmarkingModelInspiredbyEvolution 32

Comparison:BiologicalEvolutionvs.AIDevelopment 32

DiversityandResilienceinAISystems 33

TheChallengeofBenchmarkingAIResilience 33

AIResilience-SuggestedDefinition 33

ProposedAIResilienceScore 34

IntelligenceAwareness 35

FundamentalDifferencesinIntelligentSystems 35

Bibliography 36

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.5

ExecutiveSummary

A(r)evolutionaryAIbenchmarkingmodelisintroducedtonavigatethecomplexlandscapeofAI

governanceandcompliance.Revenue-drivenadvancementsoutpaceregulatoryeffortstoestablish

safeguards,oftenfallingshortinensuringthatAIsystemsaretrulyrobustandtrustworthy.Leadershipaddressesthiscriticalgapbyintroducinganovelbenchmarkingmodelinspiredbyprinciplesofevolutionandpsychologytoprioritizerobustnessalongsideperformance,empoweringexecutivestoproactivelyassesstheoverallqualityoftheirAIsystems.

DrawinglessonsfrompastAIfailuresincasestudiesandanalyzingindustrieslikeautomotive,aviation,criticalinfrastructureandessentialservices,defense,education,finance,andhealthcare,weprovidepracticalinsightsandactionableguidanceforbusinesses.Weadvocateforintegratingdiverse

perspectiveswithregulatoryguidelinestopropeltheindustrytowardsmoreethicalandtrustworthyAI

applications.Thefocusontrustworthinessiskeyforminimizingrisks,protectingreputation,andfosteringresponsibleAIinnovation,deployment,anduse.

Thisdocumentempowerskeydecisionmakers,includinggovernmentofficials,regulatorybodies,and

industryleaders,toestablishAIgovernanceframeworksthatensureethicalAIdevelopment,deployment,anduse.AnovelbenchmarkingmodelisintroducedtoassessAIquality,providingapracticaltoolfor

long-termsuccess.

Introduction

TherapidevolutionofArtificialIntelligence(AI)promisesunprecedentedadvances.However,asAI

systemsbecomeincreasinglysophisticated,theyalsoposeescalatingrisks.Pastincidents,frombiasedalgorithmsinhealthcaretomalfunctioningautonomousvehicles,starklyhighlighttheconsequencesofAIfailures.Currentregulatoryframeworksoftenstruggletokeeppacewiththespeedoftechnological

innovation,leavingbusinessesvulnerabletobothreputationalandoperationaldamage.

Inresponsetothesechallenges,thisdocumentaddressestheurgentneedforamoreholisticperspectiveonAIgovernanceandcompliance.We'llexplorethefoundationsofAI,examineissuesacrosscritical

industries,andprovidepracticalguidanceforresponsibleimplementation.Wepresentanovelapproachthatcomparesthe(r)evolutionofAIwithbiology,andintroducesathought-provokingconceptof

diversitytoenhancesafetyofAItechnology.Differencesinintelligenceandthesuccessfulinteractionofsuchsystemsarediscussed.Aninnovativebenchmarkingframeworkispresentedtoincreasethesafetyandreliabilityofthisdisruptivetechnology.

Thisapproachempowersdecision-makersandtechnicalteamsaliketoassessthesafetyand

trustworthinessofAIsystems.WeadvocateforintegratingdiverseperspectivesandregulatoryguidelinestofosterethicalAIinnovationandestablishstronggovernancepractices.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.6

PartI:UnderstandingtheFoundations

Governancevs.Compliance

Governanceandcomplianceareessentialaspectsoforganizationalmanagement,ensuringadherencetoregulations,ethicalprinciples,standards,andsustainabilitypracticesoutlinedinthebusinesscodeof

conduct.Alignmentwithaforementionedprinciplesandregulationsensureeffectivebusinesscontinuityandethicalpractice.

Governance

[1]

,whichreferstooverseeingandcontrollingsomething,isimplementedinatop-downapproach.Seniormanagementisresponsiblefordefiningstrategyandriskappetite,andestablishinga

governanceframeworkthroughpolicies,standards,and/orprocedures.Thesedirectivesshapetheorganization'soverarchingriskmanagementapproach,complianceobligations,anddecision-makingprocesses.Governancecreatesacultureofaccountability,transparency,ethicalbehavior,and

sustainabilitywhileprioritizingsecurityandprivacymeasuresacrossthecompany.

Contrarytothetop-downapproachofgovernance,Compliance

[2]

followsabottom-upapproach,whereemployeesatvariouslevelsimplementandadheretothegovernanceframeworkdefinedbysenior

managementtomeetregulatoryrequirements.Compliancefocusesonensuringadherencetolaws,

regulations,andindustrystandards,aswellasthegoverninginternalbusinesscodeofconduct.Itisa

crucialcomponentoforganizationalmanagementtoensurethattheorganizationoperateswithin

applicablelegalandregulatoryrequirements,acceptableethicalboundaries,andminimizedriskexposure.

GovernanceandCompliance:aMovingTarget

Whilegovernanceandcomplianceareclearlydefinedobjectives,theuseofanyAIchallengestraditionalapproaches.AIcanbeviewedfromvariousperspectives,suchasatechnology,asystemusingoneor

moremodels,abusinessapplication,orauserplatform.AIcanserveonesingle,oramultitudeof,end

users,anditcanbeusedbybusinesses,informationbrokers,orotherAItechnology,toperformtasks,

solveproblems,makedecisions,orinteractwiththeenvironment.Emergingbestpractices,standards,

andregulationssurroundingtheuseofAIcontinuetoevolve,makingitchallengingtohaveaconcretesetofcompliancerequirementstoimplementandmonitor.Forcompaniesconductinginternationalbusiness,thischallengegrowsexponentially.Mostregulationshaveoverlappingrequirementswithhardlyany

radicallynewpropositionstoimprovethesafetyofAIandthecurrentframeworkisbasedonthesegeneralrequirements.

●Humanoversight:EnsurethatAIsaresubjecttohumanoversightandcontrol,withmechanismsinplacetoenablehumaninterventionanddecision-makingwhennecessary.Humanoversight

mustbecoupledwithautomatedmonitoringastheprimarystep,withhumanoversightbeingcalledinforspecificallyidentifiedusecaseswherehumaninterventionisnecessary.Thismakesthisguidancescalableandpracticalapplicable.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.7

●Safetyandreliability:PrioritizesafetyandreliabilityinAItechnologytominimizetheriskofharmtoindividualsorsociety.Thisisachievedthroughrigoroustesting,validation,risk

assessmentprocesses,andtheimplementationofmechanismsinplaceforakill-switchorrecourseincaseoffailure.

●Ethicalconsiderations:EnsureAIadherestoethicalprinciples,respectshumanrights,andpromotesfairness.

●Dataprivacyandsecurity:Enhanceddataprotectionandsecuritymeasuresshouldbe

implementedtoprotectsensitiveinformationandprivacy,preventingunauthorizedaccessormisuseofdata.Duringthedesignphases,privacy-by-designandsecurity-by-designfocusonmitigatingrisksearlyintheprocess(reflectingshift-leftinDevSecOps).Thislimitsbolt-on

securityandunforeseenriskexposureinthefinalproduct.

●AIModelandDataConsiderations:

●Biasmitigation:AddressbiasesindataandalgorithmdesignandregularlymonitorandevaluateAIsystemsforbiasanddiscrimination.Biasisacomplextopicthatbalances

necessaryinformationandalgorithmswiththeriskofstereotypicclassification.

●Transparency:EnsuretransparencyinAIbyclearlyexplaininghowitworks,includingthealgorithmsandfactorsinfluencingtheirdecisions.ImplementingXAI(explainableAI)

[2]

,

[3]

helpstofostertrustandbuildthefoundationofinformeddecisionswhileuncoveringpossiblebias.Inhealthcare,thisiscrucialandacknowledged.Regardlessoftheindustry,theusershouldbeinformediftheoutputwasproducedbyAI.

●Consistency:ConsistentdataensuresthattheAImodellearnsfromaccurateand

reliableexamples.Thisiscrucialforthemodeltogeneratecorrectandusefuloutputs.Inconsistentorconflictingdatacanconfusethemodel,leadingtoinaccuraciesinthegeneratedtextorinformation.

●Accountability:Establishmechanismsforaccountabilityandresponsibilityinthedesign,development,deployment,anduseofAI,includingclearlinesofresponsibilityfor

addressinganyissuesthatmayarise.Currently,theresponsibilityforpreventingharmtotheend-userprimarilyfallsontheAIapplicationprovideralone.Additionalmeasures,

suchasmanualsor“modelcards”

[4]

andspecificusertraining,couldhighlightashared

responsibilitybetweentheproviderandtheenduserandoutlinethedegreeoftransparencythattheendusercanexpect.

●Robustness:DevelopAIthatiswelldesignedandresilienttoadversarialattacks,dataperturbations,andotherformsofinterferenceormanipulation.Thispaperproposesanewperspectivetoevaluaterobustnesstoenhanceglobalsafety.

●Compliancewithregulations:Ensurecompliancewithrelevantlaws,regulations,andstandardsgoverningthedevelopmentanddeploymentofAIapplicationsincluding,butnotlimitedto,dataprotectionalsoregardingthetradingofdata,privacy,andsafety.

AdoptinganapproachgroundedinsharedresponsibilityacrossthehighlycomplexsupplyandvaluechainiscrucialtoensuringthecreationofsafeandtrustworthyAI.Thisinvolvesatleastthetechnicalteam,thecomplianceteam,thelegalteamand,dependingonspecificfactors,manyotherteamsaswell.TheWhiteHouseMemorandumfrom28March2024

[5]

requeststhatallagenciesmustdesignateaChiefAIOfficer(CAIO)within60days.Thisroleallowsstrategicandpurposefulmanagementandalignmentofall

involvedteamstotransform“sharedresponsibility”intoatraceablemeasurement.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.8

TheLandscapeofAI

Inthischapter,anoverviewisgiventointroduceAIwithabriefhistory,AItechnologies,andtraining

methods.Todiscusstheimportanceofdataisbeyondthescopeofthisoverviewbutitisacknowledgedthatitisanextremelyimportanttopicandisaddressedin-depthbyotherCSAWorkgroups.

ABriefHistoryofAI

BelowaresomemilestonesofArtificialIntelligencelisted,notconsideringaspecificperspectivebutgivinganoverviewofthemajordevelopmentsinthisfield.

Figure1:HistoryofArtificialIntelligence

[6]

2018:BERT:IntroducedbyGoogle,thismodelrevolutionizedlanguageunderstanding.BERT'suseoftheTransformerarchitectureandpre-trainingonmassivetextdatasetsenabledittooutperformprevious

modelsinvariouslanguagetasks.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.9

2019:GTP-2with1.5billionparameters

2020:LLMswith175billion-530billionparameters

2021:LLMswithuptoatrillionparametersfocusingonimprovingefficiencyintrainingandhandlingcomplextaskswithadvancedreasoningandfactualaccuracy.

2022:ChatGTP-3goesviral

Beyondsize:researchersareworkingnowonefficiencyintraining,alignmentwithhuman’svalue,safetyandmultimodality(incorporatingimages,audio,andotherdatatypes).

ThisbriefhistoryofAIdemonstratestheevolutionfromthemostbasiccalculatortoGenAIwithArtificialGeneralIntelligencestillonthehorizon.

TheLandscapeofAI

DifferentAItechnologiesarepresentedanddiscussed.

MachineLearning(ML)

MachineLearningisabranchofAIandcomputersciencethatfocusesonusingdataandalgorithmstoimitatehumanlearning,graduallyimprovingamodel’saccuracy

[7]

.

TinyMachineLearning(tinyML)

TinyMachineLearningisbroadlydefinedasafieldofMachineLearningtechnologiesandapplicationsthatincludehardware(dedicatedintegratedcircuits),algorithms,andsoftwarecapableofperformingon-devicesensordataanalyticsatextremelylowpower,typicallyinthemWrangeandbelow,enablingavarietyofalways-onusecasesandtargetingbatteryoperateddevices

[8]

,suchasInternetofThings

(IoT)devices.

DeepLearning(AdvancedML)

DeepLearningisamethodinAIthatteachescomputerstoprocessdatainawaythatisinspiredbythehumanbrain.DeepLearningmodelscanrecognizecomplexpatternsinpictures,text,sounds,andotherdatatoproduceaccurateinsightsandpredictionsusingneuralnetworks.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.10

GenerativeArtificialIntelligence(GenAI)

GenerativeArtificialIntelligencereferstodeep-learningortransformermodelsthatcantakerawdataand“learn”togeneratestatisticallyprobableoutputswhenprompted.Unliketheaboveclassificatorymodelsthatareprimarilyusedforclassificationandpatternrecognitiontasks,GenerativeAImodelsareusedforsynthesisofdata,matchinghigh-orderpatternsoflearningdataand/orpredictiveanalytics.Atahigh

level,generativemodelsencodeasimplifiedrepresentationoftheirtrainingdataandpredictthenextsetsimilar,butnotidenticalto,theoriginaldata

[9]

.

ArtificialGeneralIntelligence(AGI)

ArtificialGeneralIntelligenceisatheoreticalformofAIusedtodescribeacertainmindsetofAI

development.Itinvolvesanintelligenceequal(orsuperior)tohumansandaself-awareconsciousnessthatcanlearnandsolvecomplexproblems,andplanforthefuture

[10]

.

TheLandscapeofTrainingMethods

ArtificialIntelligencecanbegroupedintothefollowingtypes

[11]

:

Figure2:TypesofMachineLearning

SupervisedLearning

SupervisedLearningisastyleofMachineLearningwherealgorithmslearnfrom“labeleddata”.Itisusedforclassificationandregressionproblems.“Labeleddata”providesknowninputsanddesiredoutputs,allowingthealgorithmtoidentifypatternsandbuildamodelforpredictingoutcomesonpreviously

unseendata.

Exampleforclassificationalgorithms:decisiontrees,randomforests,linearclassifiers,andsupportvectormachines.

Exampleforregressionalgorithms:linearregression,multivariateregression,regressiontrees,andlassoregression.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.11

UnsupervisedLearning

UnsupervisedLearningisastyleofMachineLearningwherealgorithmsanalyzeunlabeleddata.Thegoalistodiscoverhiddenpatterns,groupings,patterns,orinsightswithinthedatawithoutpredetermined

outcomes.Aproperlytrainedmodelisabletomakepredictionsusingunseendata.

Examplealgorithms:k-means,k-medoids,hierarchicalclustering,Apriori,andFPGrowth.

ReinforcedLearning

ReinforcedLearningisastyleofMachineLearningwhereanagentinteractswithanenvironmentand

learnsthroughtrialanderror.Theagentreceivesrewardsorpenaltiesbasedonitsactions,allowingittoadjustitsbehaviorandoptimizeitsdecision-makingprocessovertime.

Examplealgorithms:ReinforcedLearning,MarkovDecisionProcess,Q-learning,PolicyGradientMethod,andActor-Critic,butmanymoreexist.

Semi-supervisedLearning

Semi-supervisedLearningbridgesthegapbetweensupervisedandunsupervisedlearning.Itutilizesasmallamountoflabeleddataalongsidealargerpoolofunlabeleddata.Thisapproachisvaluablewhenobtaininglabeleddataiscostlyortime-consumingsinceitallowsthemodeltoleveragepatternsfoundwithintheunlabeleddataaswell.

Self-supervisedLearning

Self-supervisedLearningisaformofUnsupervisedLearningwherethemodelgeneratesitsownlabelsfromtherawinputdata.Itachievesthisthroughtechniqueslikepredictingmaskedwordsinasentenceor

predictingthenextframeinavideosequence.Thisallowsforlearningrobust,generalizablerepresentationsofdataevenwithouthuman-providedlabels.

FederatedLearning

FederatedLearningisanadvancedMachineLearningtechniquedesignedtotrainalgorithmsacross

decentralizeddevicesorserversholdinglocaldatasamples,withoutexchangingthem.Thismethod

addressessignificantconcernsrelatedtoprivacy,security,anddatacentralizationbykeepingsensitivedataontheuser'sdevice,ratherthantransferringthedatatoacentralserverforprocessing(Figure3).Thismethod,introducedin2016,allowsdataprivacytobepreservedtoagreaterextentbysharingonlyparameters,notdata.FederatedLearningoffersaframeworktojointlytrainaglobalmodelusingdata

setsstoredinseparateclients.Thisoffersagoodoptionforindustrieswhereprivacyiscrucial,asoriginaldataisconsideredimpossibletorecover

[12]

.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.12

Figure3:ArchitectureforaFederatedLearningsystem

[12]

Anotheradvantageofthismodel,notdiscussedintheabovepaper

[12]

,istheabilitytoleveragethe

“wisdomofthecrowd”

[13]

.Neuronsinthehumanbrainapplythisconcepttoproduceexactinformationfromnon-deterministicneuralprocesses.

Currently,FederatedLearningseemstohavethepotentialtointegrateprivacy,performance,androbustnessbasedondiversity.Thislearningmethodisnotdiscussedmuch,butitispromisingin

industriesorapplicationswheredataprivacyandconfidentialityareparamountandalsohelpsaddresstheissuesarounddataresidency.

However,therearealsopotentialprivacyconcernswithFederatedLearningincludingtheriskofmalicioususersdisruptingmodelaggregation,whichcanimpactmodelaccuracyorleadtoprivacydisclosures.

Attackscantargetmodelupdatessharedduringtraining,possiblyallowingfortheextractionofrawtrainingdata.Toaddresstheseconcerns,researchersproposeprivacy-preservingtechniqueslike

differentialprivacy,distributedencryption,andzero-knowledgeprooftosafeguarddataandfilteroutanomaliesfrommaliciousactors.FederatedLearning,likeanyotherlearningmethod,requiresthat

adequatecybersecuritymeasuresareinplace.

TrainingMethodsRegulationsandEthicalConsiderations

WhiletherearenospecificregulationsgoverningMLtraining,itisimpactedbythemajorregulatoryframeworks,includingtheGeneralDataProtectionRegulation(GDPR),theEUAIAct,andthe

OrganisationforEconomicCo-operationandDevelopment(OECD)principlesonAI.Further,regulationsgoverningMachineLearning(ML)andartificialintelligence(AI)trainingarerapidlyevolvingas

technologyadvancesandarecoveredin“

PrinciplestoPractice:ResponsibleAIinaDynamicRegulatory

Environment

”.Additionally,manygovernmentbodiesareactivelydevelopingregulationsandfacilitatingcooperativeindustryeffortstothesameeffect.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.13

RegulationsgoverningMachineLearning(ML)andartificialintelligence(AI)havesignificantimplicationsfordatamonetizationandtheuseofAItoguidebusinessdecisions.Theseeffectsmanifestinvarious

ways,includingoperationalchanges,strategicadjustments,andethicalconsiderations,aswellas

limits/requirementsondatacollectionanduse,bias,anddataquality.Certainplatforms,forexample,haveforbiddentheusageoftheirdataforAItrainingpurposes(suchasX:“crawlingorscrapingthe

Servicesinanyform,foranypurposewithoutourpriorwrittenconsentisexpresslyprohibited”

[14]

)orhavesolditunderalicensingagreement(suchasReddit

[15]

).

Meetingregulatoryrequirementscanintroducesignificantcompliancecosts,especiallyforbusinesses

operatingacrossmultiplejurisdictions.Despitethechallenges,regulationsalsoofferopportunities.

Businessesthatadeptlynavigatetheregulatorylandscapecandifferentiatethemselvesbyofferingmoresecure,transparent,andethicalAIsolutions.Thiscanappealtoincreasinglyprivacy-consciousconsumersandpartners,potentiallyopeningnewmarketsorcreatingstrongercustomerloyalty.

Licensing,Patenting&CopyrightofAITechnology

ManyMachineLearningframeworksandlibrariesfollowtheOpenSourceInitiativeLicensing,suchasApache2.0

[16]

orMIT

[17]

.Certainlicensingmightforbidcommercialuseoftheresultingapplication.

TheEuropeanPatentOffice’s(EPO)revisedGuidelinesforExamination

[18]

,

[19]

havebeenmadepublicandincludeafewsignificantchangestotheEPO’sprocedureforreviewinginnovationsinthedomainsofMLandAI.RecentamendmentsmandatethatapplicantsforAIorMLinventionsfurtherelucidate

mathematicaltechniquesandtraininginput/datainamannerthoroughenoughtoreplicatethetechnicalresultoftheinventionovertheentiretyoftheclaim.Thearticlecitedbelowstatesthat“caselawsuggeststhatthestructureofanyneuralnetworksused,theirtopology,activationfunctions,endconditions,and

learningmechanismareallrelevanttechnicaldetailsthatanapplicationmightneedtodisclose”.Thisarticle

[20]

summarizesfurtherimplicationsandexpoundsonthistopic.

OnJanuary23,2024,theJapanAgencyforCulturalAffairs(ACA)releaseditsdraft“ApproachtoAIandCopyright”forpubliccomment,toclarifyhowingestionandoutputofcopyrightedmaterialsinJapan

shouldbeconsidered.OnFebruary29,2024,afterconsideringnearly25,000comments,additional

changesweremade.Thisdocument,createdbyanACAcommittee,willlikelybeadoptedbytheACAinthenextfewweeks.Thisarticle

[21]

providesasummaryofthekeypointsofthedraftitselfandas

modified.

TherearedisputesaboutcopyrightinSingapore

[22]

;thisiscurrentlyaveryvolatilefield.Itisfurtheraddressedinalsoin“

PrinciplestoPractice:ResponsibleAIinaDynamicRegulatoryEnvironment

”.

©Copyright2024,CloudSecurityAlliance.Allrightsreserved.14

PartII:Real-WorldCaseStudiesandIndustryChallenges

Inthispart,afewindustr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论