![第07讲圆锥曲线中的离心率问题(高阶拓展)(学生版)_第1页](http://file4.renrendoc.com/view4/M02/00/28/wKhkGGaBkmOAa1dUAAJqEwr48Lg052.jpg)
![第07讲圆锥曲线中的离心率问题(高阶拓展)(学生版)_第2页](http://file4.renrendoc.com/view4/M02/00/28/wKhkGGaBkmOAa1dUAAJqEwr48Lg0522.jpg)
![第07讲圆锥曲线中的离心率问题(高阶拓展)(学生版)_第3页](http://file4.renrendoc.com/view4/M02/00/28/wKhkGGaBkmOAa1dUAAJqEwr48Lg0523.jpg)
![第07讲圆锥曲线中的离心率问题(高阶拓展)(学生版)_第4页](http://file4.renrendoc.com/view4/M02/00/28/wKhkGGaBkmOAa1dUAAJqEwr48Lg0524.jpg)
![第07讲圆锥曲线中的离心率问题(高阶拓展)(学生版)_第5页](http://file4.renrendoc.com/view4/M02/00/28/wKhkGGaBkmOAa1dUAAJqEwr48Lg0525.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第07讲圆锥曲线中的离心率问题(高阶拓展)(核心考点精讲精练)1.4年真题考点分布4年考情考题示例考点分析关联考点2023年新I卷,第5题,5分求椭圆的离心率或离心率的取值范围由椭圆的离心率求参数的取值范围无2023年新I卷,第16题,5分利用定义解决双曲线中集点三角形问题求双曲线的离心率或离心率的取值范围无2022年全国甲卷(文科),第11题,5分根据离心率求椭圆的标准方程根据a、b、c求椭圆标准方程2022年全国甲卷(理科),第10题,5分求椭圆的离心率或离心率的取值范围已知两点求斜率2022年全国乙卷(理科),第11题,5分求双曲线的离心率或离心率的取值范围用和、差角的正弦公式化简、求值正弦定理解三角形2022年新I卷,第16题,5分根据离心率求楠圆的标准方程椭圆中焦点三角形的周长问题2021年全国乙卷(理科),第11题,5分求椭圆的离心率或离心率的取值范围根据二次函数的最值或值域求参数2021年全国甲卷(理科),第5题,5分求双曲线的离心率或离心率的取值范围无2.命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题稳定,难度中等或偏难,分值为5分【备考策略】离心率的定义及对曲线的影响用定义法求离心率3.能用文中其他方法快速求解离心率4.能求解离心率的相关最值问题【命题预测】本节内容是新高考卷的常考内容,一般以椭圆或双曲线为载体在小题中考查,有时也会在大题中命题,需重点强化练习知识讲解椭圆离心率求解的5种常用方法公式1:公式2:变形证明:公式3:已知棚圆方程为,两焦点分别为,设焦点三角形,,则椭圆的离心率证明:,由正弦定理得:由等比定理得:,即.公式4:以椭圆两焦点及椭圆上任一点(除长轴两端点外)为顶点,则证明:由正弦定理有.公式5:点是椭圆的焦点,过的弦与椭圆焦点所在轴的夹角为为直线的斜率,且.,则当曲线焦点在轴上时,注:或者而不是或双曲线离心率求解的5种常用方法公式1:公式证明:公式3:已知双曲线方程为两焦点分别为,设焦点三角形,则证明:,由正弦定理得:由等比定理得:即。公式4:以双曲线的两个焦点及双曲线上任意一点除实轴上两个端点外)为顶点的,则离心率证明:由正弦定理,有即又公式5:点是双曲线焦点,过弦与双曲线焦点所在轴夹角为为直线斜率,,则,当曲线焦点在轴上时,注:或者而不是或考点一、椭圆、双曲线中的定义法求离心率1.(2023·北京大兴·校考三模)实轴长和虚轴长相等的双曲线称为等轴双曲线,则等轴双曲线的离心率为(
)A. B.2 C. D.32.(2023·安徽·校联考模拟预测)已知椭圆的长轴长是短轴长的2倍,则的离心率为(
)A. B. C. D.3.(2023·内蒙古通辽·校考模拟预测)已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为(
)A. B. C. D.24.(2023·河南新乡·新乡市第一中学校考模拟预测)已知椭圆的左顶点为,点是椭圆上关于的斜率之积为,则的离心率为(
)A. B. C. D.5.(2023·浙江台州·统考二模)已知椭圆经过点和,则椭圆的离心率为.1.(2023·北京海淀·清华附中校考模拟预测)若双曲线的一条渐近线方程为,则该双曲线的离心率为(
)A. B. C. D.2.(2023·新疆阿克苏·校考一模)已知双曲线的一条渐近线方程为,则双曲线的离心率为(
)A.2 B. C. D.3.(2023·新疆喀什·校考模拟预测)已知椭圆C:的右焦点为,P为椭圆的左顶点,且,则C的离心率为(
)A. B. C. D.4.(2023·内蒙古呼和浩特·统考二模)一个椭圆的长轴长是短轴长的2倍,则该椭圆的离心率为.5.(2023·河南·马店第一高级中学校联考模拟预测)已知双曲线C:,其右焦点到渐近线的距离为2,则该双曲线的离心率为.考点二、利用“公式3”求焦点三角形中椭圆、双曲线的离心率已知是椭圆的两个焦点,是上的一点,若,且,则的离心率为)A.B.C.D.2.(全国·高考真题)设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B. C. D.3.(2022秋·山东青岛·高二山东省青岛第五十八中学校考期中)椭圆的左、右焦点分别为,焦距为,若直线与椭圆C的一个交点M满足,则该椭圆的离心率等于(
)A. B. C. D.4.(2023春·辽宁朝阳·高二校联考阶段练习)(附加公式4)记椭圆:的左顶点为,右焦点为,过点且倾斜角为的直线与椭圆交于另一点,若,则椭圆的离心率为(
)A. B. C. D.5.(全国·高考真题)设是等腰三角形,,则以,为焦点,且过点的双曲线的离心率为(
)A. B. C. D.1.(2023·北京·首都师范大学附属中学校考模拟预测)已知,分别是双曲线C:(,)的两个焦点,P为双曲线C上一点,且,那么双曲线C的离心率为(
)A. B. C.2 D.2.(2023秋·山东菏泽·高三统考期末)设,是椭圆上存在一点,使,且,则的离心率为.3.(天津红桥·高二统考期末)已知F1,F2是双曲线(a>0,b>0)的两个焦点,以线段F1F2为边作正三角形MF1F2,若线段MF1的中点在此双曲线上,则双曲线的离心率为(
)A.+1 B.4+2C. D.-1考点三、利用“公式5”求椭圆、双曲线离心率1.(全国·高考真题)已知双曲线的右焦点为F且斜率为的直线交C于A、B两点,若,则C的离心率为A. B. C. D.2.(全国·高考真题)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则A.1 B. C. D.23.(2023·山东烟台·统考三模)已知分别是椭圆的左、右焦点,是上一点且与轴垂直,直线与的另一个交点为,若,则的离心率为(
)A. B. C. D.1.(2022·全国·高三专题练习)已知F为椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交椭圆C于点D,且,则椭圆的离心率为(
)A. B. C. D.2.(2022·全国·高三专题练习)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知.求椭圆的离心率;3.(2023·浙江温州·乐清市知临中学校考二模)已知椭圆的右焦点为,过右焦点作倾斜角为的直线交椭圆于两点,且,则椭圆的离心率为(
)A. B. C. D.考点四、斜率乘积求离心率1.(2023·浙江宁波·统考二模)设椭圆的右焦点为,点在椭圆外,P,Q在椭圆上,且P是线段AQ的中点.若直线PQ,PF的斜率之积为,则椭圆的离心率为(
)A. B. C. D.2.(2022秋·吉林长春·高二长春外国语学校校考期末)已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为(
)A. B. C.2 D.33.(2022·全国·高三专题练习)过点作斜率为的直线与椭圆:()相交于、两点,若是线段的中点,则椭圆的离心率等于(
)A. B. C. D.1.(吉林·高三阶段练习)已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为
A. B. C. D.2.(2023·高二课时练习)已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率为,,若,则双曲线的离心率为(
)A. B. C.2 D.33.(2023·江苏镇江·江苏省镇江中学校考模拟预测)椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为(
)A. B. C. D.考点五、余弦定理求离心率1.(2023·福建宁德·校考二模)已知双曲线的左、右焦点分别为、,过的直线交双曲线的右支于、两点.点满足,且,者,则双曲线的离心率是(
)A. B. C. D.2.(2023·海南海口·海南华侨中学校考模拟预测)已知,分别是椭圆:()的左,右焦点,是上的一点,若,且,则的离心率为(
)A. B. C. D.3.(2023·山东烟台·校联考三模)双曲线的左、右焦点分别为,以的实轴为直径的圆记为,过作的切线与曲线在第一象限交于点,且,则曲线的离心率为(
)A. B. C. D.1.(2023·辽宁辽阳·统考二模)已知椭圆的右焦点为,过坐标原点的直线与椭圆交于两点,点位于第一象限,直线与椭圆另交于点,且,若,,则椭圆的离心率为(
)A. B. C. D.2.(2023·江苏南京·统考二模)已知椭圆,为其左焦点,直线与椭圆交于点,,且.若,则椭圆的离心率为(
)A. B. C. D.考点六、构造齐次方程求离心率1.(2023·山东·烟台二中校联考模拟预测)已知椭圆的左、右焦点分别为,,直线过点且与椭圆的长轴垂直,直线过椭圆的上顶点与右顶点且与交于点,若(为坐标原点),且,则椭圆的离心率为(
).A. B. C. D.2.(2023·江苏无锡·校考模拟预测)已知点是椭圆的左焦点,,直线交于,两点,若,均是线段的三等分点,则椭圆的离心率为(
)A. B. C. D.3.(2023·福建厦门·厦门一中校考一模)已知双曲线的左、右焦点分别为、,过作一条直线与双曲线右支交于、两点,坐标原点为,若,,则该双曲线的离心率为(
)A. B. C. D.4.(2023·江苏淮安·江苏省郑梁梅高级中学校考模拟预测)已知,是双曲线的焦点,圆,直线经过点,直线经过点,,与圆均相切,若,则双曲线的离心率为(
)A.2 B. C. D.5.(2023·河北·校联考模拟预测)若双曲线(,)上存在四点,使得四边形为正方形,且原点为正方形中心,为双曲线右顶点,在第一象限,,设双曲线的离心率为,则(
)A. B. C. D.6.(2023·云南·校联考模拟预测)已知椭圆:的左、右焦点分别为,(如图),过的直线交于,两点,且轴,,则的离心率为(
)A. B. C. D.7.(2023·广东深圳·统考二模)设椭圆C:的左、右焦点分别为,,直线l过点.若点关于l的对称点P恰好在椭圆C上,且,则C的离心率为(
)A. B. C. D.8.(2023·湖南永州·统考一模)已知椭圆的左、右焦点分别是,点是椭圆上位于第一象限的一点,且与轴平行,直线与的另一个交点为,若,则的离心率为(
)A. B. C. D.1.(2023·山东烟台·校考模拟预测)设椭圆的焦点为,点P是C与圆的交点,的平分线交于Q,若,则椭圆C的离心率为(
)A. B. C. D.2.(2023·山东聊城·统考三模)已知双曲线:的右焦点为,过分别作的两条渐近线的平行线与交于,两点,若,则的离心率为()A. B. C. D.3.(2023·浙江·模拟预测)已知椭圆的左右焦点分别是,过的直线交椭圆于两点,若(为坐标原点),,则椭圆的离心率为(
)A. B. C. D.4.(2023·河北·校联考模拟预测)已知双曲线C:(,)的左、右焦点分别为F1、F2,点M是双曲线右支上一点,且,延长交双曲线C于点P,若,则双曲线C的离心率为()A. B.2 C. D.5.(2023·黑龙江大庆·统考一模)设,分别是椭圆的左、右焦点,点P,Q在椭圆C上,若,且,则椭圆C的离心率为(
)A. B. C. D.6.(2023·辽宁沈阳·统考一模)已知椭圆的右焦点为F,过F作倾斜角为的直线l交该椭圆上半部分于点P,以FP,FO(O为坐标原点)为邻边作平行四边形,点Q恰好也在该椭圆上,则该椭圆的离心率为(
)A. B. C. D.7.(2023·湖南郴州·统考三模)已知椭圆的两个焦点为,过作直线与椭圆相交于两点,若且,则椭圆的的离心率为(
)A. B. C. D.考点七、离心率的范围及最值问题1.(2023·全国·高三专题练习)已知双曲线的上下焦点分别为,点在的下支上,过点作的一条渐近线的垂线,垂足为,若恒成立,则的离心率的取值范围为(
)A. B. C. D.2.(2023·四川·校联考模拟预测)已知椭圆:,定点,,有一动点满足,若点轨迹与椭圆恰有4个不同的交点,则椭圆的离心率的取值范围为(
)A. B. C. D.3.(2023·全国·高三专题练习)已知,分别为双曲线的左、右焦点,点在的右支上,点在直线上,若,则双曲线的离心率的取值范围是(
)A. B.C. D.4.(2023·全国·高三专题练习)设椭圆离心率为e,双曲线的渐近线的斜率小于,则椭圆的离心率e的取值范围是(
)A. B. C. D.5.(2023·全国·高三专题练习)已知点P在以,为左、右焦点的椭圆上,椭圆内存在一点Q在的延长线上,且满足,若,则该椭圆离心率取值范围是(
)A. B. C. D.1.(2023·全国·高三专题练习)双曲线(,)的焦距为,已知点,,点到直线的距离为,点到直线的距离为,且,则双曲线离心率的取值范围为(
)A. B. C. D.2.(2023·浙江温州·乐清市知临中学校考模拟预测)设过原点且倾斜角为的直线与双曲线C:的左,右支分别交于A、B两点,F是C的焦点,若三角形的面积大于,则C的离心率的取值范围是(
)A. B. C. D.3.(2023·全国·高三专题练习)已知点F是双曲线()的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若是锐角三角形,则该双曲线的离心率e的取值范围是(
)A. B.C. D.4.(2023·江西南昌·南昌市八一中学校考三模)已知双曲线的左、右焦点分别为,,若在上存在点不是顶点,使得,则的离心率的取值范围为(
)A. B.C. D.5.(2023·河北承德·统考模拟预测)已知过点可作双曲线的两条切线,若两个切点分别在双曲线的左、右两支上,则该双曲线的离心率的取值范围为(
)A. B. C. D.【基础过关】一、单选题1.(2023·江西·统考模拟预测)椭圆的离心率为,则(
)A.1 B.2 C.3 D.2.(2023·浙江衢州·校联考一模)设椭圆的半焦距为,若,,则的离心率为(
)A. B. C. D.3.(2023·山西大同·校联考一模)已知点A,B,C为椭圆D的三个顶点,若是正三角形,则D的离心率是(
)A. B. C. D.4.(2023·河南平顶山·校联考模拟预测)已知双曲线,则C的离心率为(
)A. B. C. D.25.(2023·广西·校联考模拟预测)已知双曲线C:,O为坐标原点,过C的右焦点F作C的一条渐近线的平行线交C的另一条渐近线于点Q,若,则C的离心率为(
)A. B.3 C. D.6.(2023·江苏·统考一模)已知椭圆的右焦点为,点P,Q在直线上,,O为坐标原点,若,则该椭圆的离心率为(
)A. B. C. D.7.(2023·江西九江·统考一模)已知双曲线(),过点作的一条渐近线的垂线,垂足为,过点作轴的垂线交于点,若与的面积相等(为坐标原点),则的离心率为(
)A. B. C. D.8.(2023·贵州·统考模拟预测)椭圆的上顶点为是的一个焦点,点在上,若,则的离心率为(
)A. B. C. D.9.(2023·河北保定·统考二模)已知双曲线的右焦点为为虚轴上端点,是中点,为坐标原点,交双曲线右支于,若垂直于轴,则双曲线的离心率为(
)A. B.2 C. D.10.(2023·安徽滁州·校考一模)已知椭圆与双曲线有共同的焦点,,离心率分别为,,点为椭圆与双曲线在第一象限的公共点,且.若,则的取值范围为(
)A. B. C. D.11.(2023·上海闵行·上海市七宝中学校考模拟预测)已知椭圆的左右焦点分别为,椭圆存在一点,若,则椭圆的离心率取值范围为(
)A. B.C. D.二、填空题12.(2023·新疆乌鲁木齐·乌市一中校考三模)已知椭圆的上、下顶点分别为A,B,右焦点为F,B关于直线的对称点为.若过A,,F三点的圆的半径为a,则C的离心率为.13.(2023·云南·校联考模拟预测)已知双曲线方程为,左焦点关于一条渐近线的对称点在另一条渐近线上,则该双曲线的离心率为.14.(2023·浙江温州·统考二模)已知抛物线和椭圆相交于两点,且抛物线的焦点也是椭圆的焦点,若直线过点,则椭圆的离心率是.15.(2023·湖北武汉·武汉市第四十九中学校考模拟预测)点P是双曲线:(,)和圆:的一个交点,且,其中,是双曲线的两个焦点,则双曲线的离心率为.【能力提升】一、单选题1.(2023·河南·校联考模拟预测)已知直线与椭圆交于两点,若点恰为弦的中点,则椭圆的离心率是(
)A. B. C. D.2.(2023·陕西商洛·镇安中学校考模拟预测)已知双曲线的左焦点为,右顶点为,一条渐近线与圆在第一象限交于点,交轴于点,且,则的离心率为(
)A. B.2C. D.3.(2023·甘肃酒泉·统考三模)已知双曲线的右焦点为,过点的直线与双曲线的右支交于,两点,且,点关于原点的对称点为点,若,则双曲线的离心率为(
)A. B. C. D.4.(2023·福建厦门·厦门一中校考模拟预测)已知为双曲线:的右焦点,平行于轴的直线分别交的渐近线和右支于点,,且,,则的离心率为(
)A. B. C. D.二、多选题5.(2023·辽宁锦州·渤海大学附属高级中学校考模拟预测)已知,是椭圆:与双曲线:的公共焦点,,分别是与的离心率,且P是与的一个公共点,满足,则下列结论中正确的是(
)A. B.C.的最小值为 D.的最大值为6.(2023·广西柳州·统考模拟预测)已知双曲线的上焦点为,过焦点作的一条渐近线的垂线,垂足为,并与另一条渐近线交于点,若,则的离心率可能为(
)A. B. C. D.7.(2023·广东汕头·金山中学校考三模)已知,分别为椭圆的左、右焦点,为椭圆上任意一点(不在轴上),外接圆的圆心为,半径为,内切圆的圆心为,半径为,直线交轴于点,为坐标原点,则(
)A.最大时, B.的最小值为2C.椭圆的离心率等于 D.的取值范围为三、填空题8.(2023·广西南宁·南宁市武鸣区武鸣高级中学校考二模)设、分别为椭圆的左、右焦点,椭圆上存在点M,,,使得离心率,则e取值范围为.9.(2023·福建龙岩·福建省龙岩第一中学校考模拟预测)已知双曲线:的右焦点为,过分别作的两条渐近线的平行线与交于,两点,若,则的离心率为10.(2023·福建宁德·校考模拟预测)已知椭圆的右焦点是,直线交椭圆于两点﹐直线与椭圆的另一个交点为,若,则椭圆的离心率为.【真题感知】1.(2023·全国·统考高考真题)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色交通基础设施建设融资协议书
- 施工单位关于施工方案调整的工作联系函
- 远程教育技术在小学教育中的应用
- 高处坠落机械伤害抢救应急预案格式
- 二手车质押贷款合同范文
- 不履行租赁合同起诉书范本
- 临时聘请合同书
- 上海市粮食买卖合同参考样本
- 临沂沂州医院合同医疗服务质量提升策略
- 中外合资经营项目投资合同范文(适用于房地产开发)
- 北师大版小学六年级下册数学全册教学设计
- YY/T 0681.2-2010无菌医疗器械包装试验方法第2部分:软性屏障材料的密封强度
- GB/T 20472-2006硫铝酸盐水泥
- 烟气管道阻力计算
- 城乡环卫一体化保洁服务迎接重大节日、活动的保障措施
- 医院-9S管理共88张课件
- 高考作文复习:议论文论证方法课件15张
- MySQL数据库项目式教程完整版课件全书电子教案教材课件(完整)
- 药品生产质量管理工程完整版课件
- 《网络服务器搭建、配置与管理-Linux(RHEL8、CentOS8)(微课版)(第4版)》全册电子教案
- 职业卫生教学课件生物性有害因素所致职业性损害
评论
0/150
提交评论