版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省湛江市三校联考2025届九年级数学第一学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5) B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小 D.图象与x轴的两个交点之间的距离为52.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD3.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.4.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定5.函数与在同一直角坐标系中的大致图象可能是()A. B.C. D.6.下列计算正确的是()A.3x﹣2x=1 B.x2+x5=x7C.x2•x4=x6 D.(xy)4=xy47.下列关系式中,属于二次函数的是(x是自变量)A.y=x2 B.y= C.y= D.y=ax2+bx+c8.如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=1.A.2个 B.3个 C.4个 D.5个9.如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是A. B. C. D.10.某人从处沿倾斜角为的斜坡前进米到处,则它上升的高度是()A.米 B.米 C.米 D.米11.如图,在中,弦AB=12,半径与点P,且P为的OC中点,则AC的长是()A. B.6 C.8 D.12.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程()A. B. C.D.二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为_____.14.如图,在平行四边形ABCD中,添加一个条件________使平行四边形ABCD是矩形.15.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.16.二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是,;④当时,,其中正确的结论有__________.17.如图,从一块直径为的圆形纸片上剪出一个圆心角为的扇形,使点在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是________.18.二次函数y=2(x﹣3)2+4的图象的对称轴为x=______.三、解答题(共78分)19.(8分)甲、乙两个人在纸上随机写一个-2到2之间的整数(包括-2和2).若将两个人所写的整数相加,那么和是1的概率是多少?20.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出关于原点对称的;(2)在轴上求作一点,使的周长最小,请画出,并直接写出的坐标.21.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.22.(10分)解下列方程:(1);(2)23.(10分)已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.(1)求证:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的长.24.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)25.(12分)已知抛物线的对称轴为直线,且经过点(1)求抛物线的表达式;(2)请直接写出时的取值范围.26.如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH也是正方形,AG=x,正方形EFGH的面积为y.(1)当a=2,y=3时,求x的值;(2)当x为何值时,y的值最小?最小值是多少?
参考答案一、选择题(每题4分,共48分)1、C【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【详解】A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2、D【详解】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定3、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.4、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴点P到矩形的两条对角线AC和BD的距离之和是1.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.5、B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o时,函数的图象位于一、三象限,的开口向下,交y轴的负半轴,选项B符合;当a<o时,函数的图象位于二、四象限,的开口向上,交y轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.6、C【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方与积的乘方逐一判断即可.【详解】解:3x﹣2x=x,故选项A不合题意;x2与x5不是同类项,故不能合并,故选项B不合题意;x2•x4=x6,正确,故选项C符合题意;,故选项D不合题意.故选:C.【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟练掌握运算法则是解答本题的关键.7、A【详解】A.y=x2,是二次函数,正确;B.y=,被开方数含自变量,不是二次函数,错误;C.y=,分母中含自变量,不是二次函数,错误;D.y=ax2+bx+c,a=0时,,不是二次函数,错误.故选A.考点:二次函数的定义.8、C【分析】①根据折叠的性质∠PGC=∠PBC=90°,∠BPC=∠GPC,从而证明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性质得出AE=DE,即可利用条件证明△ABE≌△DCE;③先根据题意证明△ABE∽△DEC,再利用对应边成比例求出DE即可;④根据勾股定理和折叠的性质得出△ECF∽△GCP,再利用对应边成比例求出BP,即可算出sin值;⑤连接FG,先证明▱BPGF是菱形,再根据菱形的性质得出△GEF∽△EAB,再利用对应边成比例求出BE·EF.【详解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE=,BE=,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.【点睛】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.9、B【解析】根据常见几何体的三视图解答即可得.【详解】球的三视图均为圆,故不符合题意;正方体的三视图均为正方形,故不符合题意;圆柱体的主视图与左视图为长方形,俯视图为圆,故符合题意;圆锥的主视图与左视图为等腰三角形,俯视图为圆,故符合题意,故选B.【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义和常见几何体的三视图.10、A【分析】利用坡角的正弦值即可求解.【详解】解:∵∠ACB=90°,∠A=α,AB=600,∴sinα=,∴BC=600sinα.
故选A.【点睛】此题主要考查坡度坡角问题,正确掌握坡角的定义是解题关键.11、D【分析】根据垂径定理求出AP,连结OA根据勾股定理构造方程可求出OA、OP,再求出PC,最后根据勾股定理即可求出AC.【详解】解:如图,连接OA,∵AB=12,OC⊥AB,OC过圆心O,∴AP=BP=AB=6,∵P为的OC中点,设⊙O的半径为2R,即OA=OC=2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故选:D.【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出AP的长是解此题的关键.12、D【解析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x,依题意得60.05%(1+x)2=1%.
即60.05(1+x)2=1.
故选D.二、填空题(每题4分,共24分)13、或1【分析】分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=110°,证出D、E、N三点共线,设BN=EN=xcm,则GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);【详解】解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图1所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或1;故答案为:或1.【点睛】本题主要考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理,掌握折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理是解题的关键.14、AC=BD或∠ABC=90°【分析】根据矩形的判定方法即可解决问题;【详解】若使平行四边形ABCD变为矩形,可添加的条件是:
AC=BD(对角线相等的平行四边形是矩形);∠ABC=90°(有一个角是直角的平行四边形是矩形)等,任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.
故答案为:AC=BD或∠ABC=90°【点睛】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.15、2【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴,,,∴x+y+2y=2或53或1.∵2>53>1,∴最多可以购买2件纪念品.故答案为:2.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.16、①②④【分析】①由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为,得到b<0,可以①进行分析判断;
②由对称轴为,得到2a=b,b-2a=0,可以②进行分析判断;
③对称轴为x=-1,图象过点(-4,0),得到图象与x轴另一个交点(2,0),可对③进行分析判断;
④抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),即可对④进行判断.【详解】解:①∵抛物线的开口向下,
∴a<0,
∵与y轴的交点在y轴的正半轴上,
∴c>0,
∵对称轴为<0
∴b<0,
∴abc>0,故①正确;
②∵对称轴为,∴2a=b,
∴2a-b=0,故②正确;
③∵对称轴为x=-1,图象过点A(-4,0),
∴图象与x轴另一个交点(2,0),
∴关于x的一元二次方程ax2+bx+c=0的解为x=-4或x=2,故③错误;
④∵抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),
∴当y>0时,-4<x<2,故④正确;∴其中正确的结论有:①②④;故答案为:①②④.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.17、【分析】连接BC,根据圆周角定理求出BC是⊙O的直径,BC=12cm,根据勾股定理求出AB,再根据弧长公式求出半径r.【详解】连接BC,由题意知∠BAC=90°,∴BC是⊙O的直径,BC=12cm,∵AB=AC,∴,∴(cm),设这个圆锥的底面圆的半径是rcm,∵,∴,∴r=(cm),故答案为:.【点睛】此题考查圆周角定理,弧长公式,勾股定理,连接BC得到BC是圆的直径是解题的关键.18、1【分析】已知抛物线的顶点式,可知顶点坐标和对称轴.【详解】∵y=2(x﹣1)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,对称轴为直线x=1.故答案为1.【点睛】本题考查了二次函数的对称轴问题,掌握抛物线的顶点式是解题的关键.三、解答题(共78分)19、【分析】先画树状图展示所有25种等可能的结果数,再找出两数和是1的结果数,然后根据概率公式求解.【详解】解:画树状为:共25种可能,其中和为1有4种.∴和为1的概率为.【点睛】本题考查了列表法或树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20、(1)答案见解析;(2)作图见解析,P坐标为(2,0)【分析】(1)根据网格结构找出点、、关于原点的对称点、、的位置,然后顺次连接即可;(2)找出点关于轴的对称点,连接与轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点的位置,然后连接、并根据图象写出点的坐标即可.【详解】解:(1)△如图所示;(2)作点A(1,1)关于x轴的对应点,连接交x轴于点P,则点P为所求的点,连接△APB,则△APB为所求的三角形.此时点P坐标为(2,0)【点睛】本题考查了利用旋转变换作图,利用平移变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.21、(1)证明见解析;(2)3或.(3)或0<【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,②与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.【详解】(1)证明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,则有PE∥AB∴四边形ABEP为矩形,∴PA=EB=3,即x=3.情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,即∴满足条件的x的值为3或(3)或【点睛】两组角对应相等,两三角形相似.22、(1)(2).【分析】(1)利用因式分解法解方程得出答案;(2)利用因式分解法解方程得出答案;【详解】(1)解得:(2)解得:【点睛】本题考查解一元二次方程-因式分解法,熟练掌握计算法则是解题关键.23、(1)证明见解析(2)4【分析】(1)由AD为直径,得到所对的圆周角为直角,利用等角的余角相等得到一对角相等,进而利用两对角对应相等的三角形相似即可得证;(2)连接OM,由BC为圆的切线,得到OM与BC垂直,利用锐角三角函数定义及勾股定理即可求出所求.【详解】解:(1)∵AD为圆O的直径,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)连接OM.∵BC为圆O的切线,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根据勾股定理得:ME===4.【点睛】本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义以及切线的性质,熟练掌握相似三角形的判定与性质是解答本题的关键.24、(1)①105°,②见解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解决问题,②连接A′F,设EF交CA′于点O,在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《数据库原理及应用》2021-2022学年第一学期期末试卷
- 许昌学院《计算机网络技术及应用》2021-2022学年第一学期期末试卷
- 五年级数学(小数乘除法)计算题专项练习及答案
- 徐州工程学院《软件工程基础》2022-2023学年第一学期期末试卷
- 班级团体荣誉感的培养计划
- 学期交流会的内容及形式计划
- 提升小学生的创新思维计划
- 无担保借款合同三篇
- 校园绿色发展倡议计划
- 信阳师范大学《计算机组成原理实验》2021-2022学年第一学期期末试卷
- 调节池及反应池施工方案与技术措施
- 气象医疗——日干支断病刘玉山
- 财务报表(空白格式表)
- 确定如何10kV架空线路档距
- 系统生物学-第三讲-转录组学PPT课件
- 百日会战动员会报告
- 生物安全实验室病原微生物实验活动危险评估PPT课件
- 初中常用文言实词、虚词、古今异义整理归纳
- 路基施工质量监理控制要点及方法
- 初中英语教师如何做好初高中英语衔接教学
- 现代微波电路与器件设计4波导滤波器设计
评论
0/150
提交评论