版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省毕节市七星关区第三实验学校2025届九年级数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是()A.①③ B.①③④ C.①②③ D.①②③④2.已知线段a是线段b,c的比例中项,则下列式子一定成立的是()A. B. C. D.3.抛物线的顶点坐标()A.(-3,4) B.(-3,-4) C.(3,-4) D.(3,4)4.已知二次函数y=(a≠0)的图像如图所示,对称轴为x=-1,则下列式子正确的个数是()(1)abc>0(2)2a+b=0(3)4a+2b+c<0(4)b2-4ac<0A.1个 B.2个 C.3个 D.4个5.抛物线的顶点坐标为A. B. C. D.6.在同一个直角坐标系中,一次函数y=ax+c,与二次函数y=ax2+bx+c图像大致为()A. B. C. D.7.在下列各式中,运算结果正确的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2•x3=x6 D.(x﹣1)2=x2﹣18.方程x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-49.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70° B.55° C.45° D.35°10.如图,某幢建筑物从2.25米高的窗口用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点离墙1米,离地面3米,则水流下落点离墙的距离是()A.2.5米 B.3米 C.3.5米 D.4米11.如图,点在以为直径的上,若,,则的长为()A.8 B.6 C.5 D.12.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B. C. D.二、填空题(每题4分,共24分)13.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________.14.计算:cos45°=________________15.如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE=2,BE=4,则tan∠ABD=_____.16.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=1.如果点M是OP的中点,则DM的长是_____.17.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.18.如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为.三、解答题(共78分)19.(8分)2019年6月,总书记对垃圾分类工作作出重要指示.实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.兴国县某校为培养学生垃圾分类的好习惯,在校园内摆放了几组垃圾桶,每组4个,分别是“可回收物”、“有害垃圾”、“厨余垃圾”和“其它垃圾”(如下图,分别记为A、B、C、D).小超同学由于上课没有听清楚老师的讲解,课后也没有认真学习教室里张贴的“垃圾分类常识”,对垃圾分类标准不是很清楚,于是先后将一个矿泉水瓶(简记为水瓶)和一张擦了汗的面巾纸(简记为纸巾)随机扔进了两个不同的垃圾桶。说明:矿泉水瓶属于“可回收物”,擦了汗的面巾纸属于“其它垃圾”.(1)小超将矿泉水瓶随机扔进4个垃圾桶中的某一个桶,恰好分类正确的概率是_____;(2)小超先后将一个矿泉水瓶和一张擦了汗的面巾纸随机扔进了两个不同的垃圾桶,请用画树状图或列表的方法,求出两个垃圾都分类错误的概率.20.(8分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.21.(8分)如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA·PB=PC·PD(1)如图(2),若AB与CD相交于圆外一点P,上面的结论是否成立?请说明理由.(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C,直接写出PA、PB、PC之间的数量关系.(3)如图(3),直接利用(2)的结论,求当PC=,PA=1时,阴影部分的面积.22.(10分)小王去年开了一家微店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同,试求每月盈利的平均增长率.23.(10分)如图,已知反比例函数(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:∆ACB∽∆NOM;(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.24.(10分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.25.(12分)在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.26.如图,一块三角形的铁皮,边为,边上的高为,要将它加工成矩形铁皮,使它的的一边在上,其余两个顶点、分别在、上,(1)若四边形是正方形,那么正方形边长是多少?(2)在矩形EFGH中,设,,①求与的函数关系,并求出自变量的取值范围;②取多少时,有最大值,最大值是多少?
参考答案一、选择题(每题4分,共48分)1、C【分析】①根据抛物线的开口方向、对称轴、与y轴的交点即可得结论;②根据抛物线与x轴的交点坐标即可得结论;③根据对称轴和与x轴的交点得另一个交点坐标,把另一个交点坐标代入抛物线解析式即可得结论;④根据点(,1)和对称轴方程即可得结论.【详解】解:①观察图象可知:a<1,b<1,c>1,∴abc>1,所以①正确;②当x=时,y=1,即a+b+c=1,∴a+2b+4c=1,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>1,所以②正确;③因为对称轴x=﹣1,抛物线与x轴的交点(,1),所以与x轴的另一个交点为(﹣,1),当x=﹣时,a﹣b+c=1,∴25a﹣11b+4c=1.所以③正确;④当x=时,a+2b+4c=1,又对称轴:﹣=﹣1,∴b=2a,a=b,b+2b+4c=1,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<1,∴3b+2c<1.所以④错误.故选:C.【点睛】本题考查了利用抛物线判断式子正负,正确读懂抛物线的信息,判断式子正负是解题的关键2、B【解析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.【详解】A选项,由得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【点睛】本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.3、D【解析】根据抛物线顶点式的特点写出顶点坐标即可得.【详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3,4),故选D.【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.4、B【详解】由图像可知,抛物线开口向下,a<0,图像与y轴交于正半轴,c>0,对称轴为直线x=-1<0,即-<0,因为a<0,所以b<0,所以abc>0,故(1)正确;由-=-1得,b=2a,即2a-b=0,故(2)错误;由图像可知当x=2时,y<0,即4a+2b+c<0,故(3)正确;该图像与x轴有两个交点,即b2-4ac>0,故(4)错误,本题正确的有两个,故选B.5、B【分析】利用顶点公式,进行计算【详解】顶点坐标为故选B.【点睛】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.6、D【分析】先分析一次函数,得到a、c的取值范围后,对照二次函数的相关性质是否一致,可得答案.【详解】解:依次分析选项可得:
A、分析一次函数y=ax+c可得,a>0,c>0,二次函数y=ax2+bx+c开口应向上;与图不符.
B、分析一次函数y=ax+c可得,a<0,c>0,二次函数y=ax2+bx+c开口应向下,在y轴上与一次函数交于同一点;与图不符.
C、分析一次函数y=ax+c可得,a<0,c<0,二次函数y=ax2+bx+c开口应向下;与图不符.
D、一次函数y=ax+c和二次函数y=ax2+bx+c常数项相同,在y轴上应交于同一点;分析一次函数y=ax+c可得a<0,二次函数y=ax2+bx+c开口向下;符合题意.
故选:D.【点睛】本题考查一次函数、二次函数的系数与图象的关系,有一定难度,注意分析简单的函数,得到信息后对照复杂的函数.7、B【分析】根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.【详解】解:A、x2+x2=2x2,故本选项错误;B、x﹣2x=﹣x,故本选项正确;C、x2•x3=x5,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.【点睛】本题主要考查了合并同类项、完全平方公式及同底数幂的乘法运算等,掌握运算法则是解题的关键.8、C【解析】两边开方得到x=±1.【详解】解:∵x1=4,
∴x=±1,
∴x1=1,x1=-1.
故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax1+c=0(a≠0)的方程可变形为,当a、c异号时,可利用直接开平方法求解.9、B【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【详解】连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=(180°﹣∠AOB)=55°.故选B.【点睛】本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.10、B【分析】由题意可以知道M(1,2),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴抛物线的解析式为:y=-0.1(x-1)2+2.当y=0时,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.11、D【分析】根据直径所对圆周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性质解出即可.【详解】∵AB是直径,∴∠C=90°,∵∠A=30°,∴,.故选D.【点睛】本题考查圆周角的性质及特殊直角三角形,关键在于熟记相关基础知识.12、B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD与BC间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.二、填空题(每题4分,共24分)13、0.1【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+1+3+2+1=36个.概率为36÷90=0.1.故答案为:0.1.14、1【分析】将cos45°=代入进行计算即可.【详解】解:cos45°=故答案为:1.【点睛】此题考查的是特殊角的锐角三角函数值,掌握cos45°=是解决此题的关键.15、【分析】根据圆周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根据相似三角形的性质求出AD,根据正切的定义解答即可.【详解】∵点D是弧AC的中点,∴,∴∠DAC=∠ABD,又∵∠ADE=∠BDA,∴△ADE∽△BDA,∴,即,解得:AD=2,∵AB为⊙O的直径,∴∠ADB=90°,∴tan∠ABD=tan∠DAE.故答案为:.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、正切的定义,掌握相似三角形的判定定理和性质定理是解答本题的关键.16、2.【分析】由角平分线的性质得出∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,由勾股定理得出,由平行线的性质得出∠OPC=∠AOP,得出∠OPC=∠BOP,证出,得出OE=CE+CO=8,由勾股定理求出,再由直角三角形斜边上的中线性质即可得出答案.【详解】∵OP平分∠AOB,PD⊥OA于点D,PE⊥OB于点E,∴∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,∴,∵CP∥OA,∴∠OPC=∠AOP,∴∠OPC=∠BOP,∴,∴,∴,在Rt△OPD中,点M是OP的中点,∴;故答案为:2.【点睛】本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP是解题的关键.17、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为∴这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.18、160°.【分析】根据平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.【详解】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°﹣50°=130°,∵AE⊥BE,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为160°.【点睛】本题考查旋转的性质,掌握旋转的性子,数形结合是本题的解题关键.三、解答题(共78分)19、(1);(2)【分析】(1)根据概率公式即可得答案;(2)画出树状图,可得出总情况数和两个垃圾都分类错误的情况数,利用概率公式即可得答案.【详解】(1)∵共有4组,每组4个桶,∴共有16个桶,∵分类正确的有4个桶,∴分类正确的概率为=.(2)画树状图得:∵共有12种等可能的结果,两个垃圾都分类错误的情况有7种:BA,BC,CA,CB,DA,DB,DC∴P(两个垃圾都分类错误)=.【点睛】本题考查利用列表法或树状图法求概率,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.20、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE//OD,结合切线的性质即可证出DE⊥AE;(2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°即可证出△DAE≌△DAM(SAS),根据全等三角形的性质可得出AE=AM,由∠EAD=∠MAD可得出,进而可得出CD=BD,结合DE=DM可证出Rt△DEC≌Rt△DMB(HL),根据全等三角形的性质可得出CE=BM,结合AB=AM+BM即可证出AE+CE=AB.【详解】连接OD,如图1所示,,AD平分,,,,,是的切线,,,;过点D作于点M,连接CD、DB,如图2所示,平分,,,,在和中,,≌,,,,,在和中,,≌,,.【点睛】本题考查了全等三角形的判定与性质、切线的性质、角平分线的性质、等腰三角形的性质、平行线的判定与性质以及圆周角定理,解题的关键是:(1)利用平行线的判定定理找出AE//OD;(2)利用全等三角形的性质找出AE=AM、CE=BM.21、(1)成立,理由见解析;(2);(3)【分析】(1)连接AD、BC,得到∠D=∠B,可证△PAD∽△PCB,即可求解;(2)根据(1)中的结论即可求解;(3)连接OC,根据,PC=,PA=1求出PB=3,AO=CO=1,PO=2利用,得到AOC为等边三角形,再分别求出,即可求解.【详解】解:(1)成立理由如下:如图,连接AD、BC则∠D=∠B∵∠P=∠P∴△PAD∽△PCB∴=∴PA·PB=PC·PD(2)当PD与⊙O相切于点C时,PC=PD,由(1)得PA·PB=PC·PD∴(3)如图,连接OC,PC=,PA=1PB=3,AO=CO=1,PO=2PC与⊙O相切于点CPCO为直角三角形,AOC为等边三角形====【点睛】此题主要考查圆内综合问题,解题的关键是熟知相似三角形的判定与性质、切线的性质及扇形面积的求解公式.22、【分析】设该商店的每月盈利的平均增长率为x,根据“2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同”,列出关于x的一元二次方程,解之即可.【详解】设该商店的每月盈利的平均增长率为x,根据题意得:2400(1+x)2=3456,解得:x1=0.2,x2=−2.2(舍去),答:每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.23、(1);(2)证明见解析;(3),.【解析】试题分析:(1)把A点坐标代入可得k的值,进而得到函数解析式;(2)根据A、B两点坐标可得AC=4-n,BC=m-1,ON=n,OM=1,则,再根据反比例函数解析式可得=n,则,而,可得,再由∠ACB=∠NOM=90°,可得△ACB∽△NOM;(3)根据△ACB与△NOM的相似比为2可得m-1=2,进而得到m的值,然后可得B点坐标,再利用待定系数法求出AB的解析式即可.试题解析:(1)∵(x>0,k是常数)的图象经过点A(1,4),∴k=4,∴反比例函数解析式为y=;(2)∵点A(1,4),点B(m,n),∴AC=4-n,BC=m-1,ON=n,OM=1,∴,∵B(m,n)在y=上,∴=n,∴,而,∴,∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m-1=2,m=3,∴B(3,),设AB所在直线解析式为y=kx+b,∴,解得,∴AB的解析式为y=-x+.考点:反比例函数综合题.24、(2);(2)t=2或2;(3)().【分析】(2)由等边三角形OAB得出∠ABC=92°,进而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分类讨论:△PHQ∽△ABC和△QHP∽△ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024葡萄酒年份酒经销商售后服务与销售合同3篇
- 2024药品质量检验与监管合同
- 二零二四年委托创作合同:原创音乐作品委托创作协议
- 二零二五年度绿色复垦土地流转合同模板3篇
- 二零二五年度大巴车租赁与绿色出行宣传合同3篇
- 2025年度餐饮店食品安全风险评估合同9篇
- 二零二四年三人共同投资大数据科技公司合同3篇
- 2025年度铁路旅游列车运营管理合同3篇
- 2025年度绿色家居产品认证服务合同简易版2篇
- 2024年环境工程监理研发合同
- 专升本英语阅读理解50篇
- 施工单位值班人员安全交底和要求
- 中国保险用户需求趋势洞察报告
- 数字化转型指南 星展银行如何成为“全球最佳银行”
- 中餐烹饪技法大全
- 灵芝孢子油减毒作用课件
- 现场工艺纪律检查表
- 医院品管圈与护理质量持续改进PDCA案例降低ICU病人失禁性皮炎发生率
- 新型电力系统研究
- 烘干厂股东合作协议书
- 法院服务外包投标方案(技术标)
评论
0/150
提交评论