版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市中学2025届九年级数学第一学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球 B.摸出的是3个黑球C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球2.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.3.如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是()A. B. C. D.4.方程(x+1)2=4的解是()A.x1=﹣3,x2=3 B.x1=﹣3,x2=1 C.x1=﹣1,x2=1 D.x1=1,x2=35.若,则的值是()A.1 B.2 C.3 D.46.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)7.已知二次函数(是实数),当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是()A. B.C. D.8.已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm29.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B.C. D.10.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处二、填空题(每小题3分,共24分)11.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.12.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是_____.13.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是.14.公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了有关黄金矩形的问题.并建立起比例理论,他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中较长部分对于全部之比,等于较短部分对于较长部分之比.所谓黄金矩形指的就是矩形的宽与长的比适合这一比例.则在黄金矩形中宽与长的比值是______.15.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于_____.16.如图,已知在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C顺时针旋转一定角度得△DEC,此时CD⊥AB,连接AE,则tan∠EAC=____.17.在Rt△ABC中,∠C=90,AB=4,BC=3,则sinA的值是______________.18.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____三、解答题(共66分)19.(10分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.20.(6分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?21.(6分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.22.(8分)先化简,再求值:,其中.23.(8分)已知关于的一元二次方程:.(1)求证:对于任意实数,方程都有实数根;(2)当为何值时,方程的两个根互为相反数?请说明理由.24.(8分)如图,已知二次函数的图象与轴交于点、,与轴交于点,直线交二次函数图象的对称轴于点,若点C为的中点.(1)求的值;(2)若二次函数图象上有一点,使得,求点的坐标;(3)对于(2)中的点,在二次函数图象上是否存在点,使得∽?若存在,求出点的坐标;若不存在,请说明理由.25.(10分)寒冬来临,豆丝飘香,豆丝是鄂州民间传统美食;某企业接到一批豆丝生产任务,约定这批豆丝的出厂价为每千克4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,新工人李明第1天生产100千克豆丝,由于不断熟练,以后每天都比前一天多生产20千克豆丝;设李明第x天(,且x为整数)生产y千克豆丝,解答下列问题:(1)求y与x的关系式,并求出李明第几天生产豆丝280千克?(2)设第x天生产的每千克豆丝的成本是p元,p与x之间满足如图所示的函数关系;若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)26.(10分)一位同学想利用树影测量树高,他在某一时间测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不完全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,测算一下这棵树的高时多少?
参考答案一、选择题(每小题3分,共30分)1、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.2、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.3、D【分析】过点作x轴的垂线,垂足为M,通过条件求出,MO的长即可得到的坐标.【详解】解:过点作x轴的垂线,垂足为M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐标为.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4、B【解析】利用直接开平方的方法解一元二次方程得出答案.【详解】(x+1)2=4则x+1=±2,解得:x1=−1-2=-3,x2=−1+2=1.故选B.【点睛】此题主要考查了直接开平方法解方程,正确开平方是解题关键.5、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.6、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.7、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】抛物线的对称轴为直线x=-=3,∵y1>y2,∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,∴|x1-3|>|x2-3|.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8、B【解析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是×6π×5=15π(cm2),故选B.9、D【解析】设AB=x,根据折叠,可证明∠AFB=90°,由tan∠BCE=,分别表示EB、BC、CE,进而证明△AFB∽△EBC,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.【详解】设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故选D.【点睛】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF和△EBC的面积比是解题关键.10、D【解析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.二、填空题(每小题3分,共24分)11、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形12、k≥﹣1【分析】根据判别式的意义得到△=41+8k≥0,然后解不等式即可.【详解】∵一元二次方程x1+4x﹣1k=0有实数根,∴△=41+8k≥0,解得,k≥﹣1.故答案为:k≥﹣1.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(1)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13、【详解】解:这个正十二面体,12个面上分别写有1~12这12个整数,其中是3的倍数或4的倍数的3,6,9,12,4,8,共6种情况,故向上一面的数字是3的倍数或4的倍数的概率是6/12=故答案为:.14、【分析】根据黄金矩形指的就是矩形的宽与长的比适合黄金分割比例,所以求出黄金分割比例即可,设线段长为1,较长的部分为x,则较短的部分为1-x,根据较长部分对于全部之比,等于较短部分对于较长部分之比,求出x,即可得到比值.【详解】解:设线段长为1,较长的部分为x,则较短的部分为1-x∴∴x1=,x2=(舍)∴黄金分割比例为:∴黄金矩形中宽与长的比值:故答案为:.【点睛】本题主要考查了黄金分割比例,读懂题意并且列出比例式正确求解是解决本题的关键.15、15或10【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB、AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【详解】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD-CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.16、【分析】设,得,根据旋转的性质得,∠1=30°,分别求得,,继而求得答案.【详解】如图,AB与CD相交于G,过点E作EF⊥AC延长线于点F,设,∵∠ACB=90°,∠B=30°,∴,∴,根据旋转的性质知:,∠DCE=∠ACB=90°,∵CD⊥AB,∴∠1+∠BAC=90°,∴∠1=30°,∵∠1+∠2+∠DCE=1800°,∴∠2=60°,∴,,∴,故答案为:.【点睛】本题考查了旋转的性质以及锐角三角函数的知识,构建合适的辅助线,借助解直角三角形求解是解答本题的关键.17、【分析】画出图形,直接利用正弦函数的定义进行求解即可.【详解】如图:在Rt△ABC中:sinA=∵AB=4,BC=3∴sinA=故本题答案为:.【点睛】本题考查了三角函数的定义,注意正弦,余弦,正切定义记清楚.18、【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,
故答案为:.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.三、解答题(共66分)19、(1)88°;(2)详见解析;(3)【分析】(1)是的完美分割线,且,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由,得,由平分,,得为等腰三角形,结合,即可得到结论;(3)由是的完美分割线,得从而得,设,列出方程,求出x的值,再根据,即可得到答.【详解】(1)∵是的完美分割线,且,∴,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴.故答案是:88°;,,不是等腰三角形,平分,,,为等腰三角形.,,,是的完美分割线.∵是以为底边的等腰三角形,∴,∵是的完美分割线,∴,设,则,,,.【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.20、(1);(2),;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【分析】(1)根据题意找到平均每天销售量(箱)与销售价(元/箱)之间的函数关系式;(2)根据题意找到平均每天销售利润W(元)与销售价(元/箱)之间的函数关系式;(3)根据二次函数解析式求最值【详解】解:(1)由题意,得,化简,得.(2)由题意,得,.(3).∵,∴抛物线开口向下.当时,有最大值.又当时,随的增大而增大,∴当元时,的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【点睛】本题考查了二次函数的实际应用和求最值,其中:利润=(售价-进价)×销量21、(1)相切,证明见解析;(2)6.【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=,推出,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=,∴,∴CD=BC=6,在Rt△ABC中,AC=.【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.22、原式=.【分析】先把分式进行化简,得到最简代数式,然后根据特殊角的三角函数值,求出x的值,把x代入计算,即可得到答案.【详解】解:原式;当时,原式.【点睛】本题考查了特殊值的三角函数值,分式的化简求值,以及分式的加减混合运算,解题的关键是熟练掌握运算法则进行运算.23、(1)见解析;(2)1,理由见解析.【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=(t﹣3)2≥0,由此可证出:对于任意实数t,方程都有实数根;(2)设方程的两根分别为m、n,由方程的两根为相反数结合根与系数的关系,即可得出m+n=t﹣1=0,解之即可得出结论.试题解析:(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t﹣1=0,解得:t=1.∴当t=1时,方程的两个根互为相反数.考点:根与系数的关系;根的判别式.24、(1);(2)或;(3)不存在,理由见解析.【分析】(1)设对称轴与轴交于点,如图1,易求出抛物线的对称轴,可得OE的长,然后根据平行线分线段成比例定理可得OA的长,进而可得点A的坐标,再把点A的坐标代入抛物线解析式即可求出m的值;(2)设点Q的横坐标为n,当点在轴上方时,过点Q作QH⊥x轴于点H,利用可得关于n的方程,解方程即可求出n的值,进而可得点Q坐标;当点在轴下方时,注意到,所以点与点关于直线对称,由此可得点Q坐标;(3)当点为x轴上方的点时,若存在点P,可先求出直线BQ的解析式,由BP⊥BQ可求得直线BP的解析式,然后联立直线BP和抛物线的解析式即可求出点P的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P是否满足条件;当点Q取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与轴交于点,如图1,∴轴,∴,∵抛物线的对称轴是直线,∴OE=1,∴,∴∴将点代入函数表达式得:,∴;(2)设,①点在轴上方时,,如图2,过点Q作QH⊥x轴于点H,∵,∴,解得:或(舍),∴;②点在轴下方时,∵OA=1,OC=3,∴,∵,∴点与点关于直线对称,∴;(3)①当点为时,若存在点P,使∽,则∠PBQ=∠COA=90°,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在;②当点为时,如图4,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在.综上所述,不存在满足条件的点,使∽.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预防触电大班安全教育
- 快速做课件教学课件
- 起重机械操作培训
- 颈椎病的运动处方
- 3.3.2盐类水解平衡常数与影响盐类水解的因素 课件高二上学期化学人教版(2019)选择性必修1
- 防意外安全演练
- 细菌性肝脓肿个案护理
- 湿疹性皮炎的护理查房
- 保育老师真辛苦教案反思
- 化简比说课稿
- 急性扁桃体炎病人的护理
- 清淤、清表施工方案
- 非外资独资或外资控股企业书面声明
- 2023上海外国语大学三亚附属中学第一次招聘19人笔试备考题库及答案解析
- 悦纳儿童的文化生长东莞市莞城中心小学“悦纳教育”的思与行
- 2022年春期2064国开电大专科《管理学基础》纸质形成性考核册答案
- 机械加工初步报价自动计算(含各种工时费)
- 碳酸氢镁介稳溶液应用于萃取分离稀土过程中的基础研究
- 城市地下综合管廊施工组织设计
- 中国舞蹈考级细则
- 2023年中国盐业集团有限公司招聘笔试题库及答案解析
评论
0/150
提交评论