四川省营山县2025届九年级数学第一学期期末检测试题含解析_第1页
四川省营山县2025届九年级数学第一学期期末检测试题含解析_第2页
四川省营山县2025届九年级数学第一学期期末检测试题含解析_第3页
四川省营山县2025届九年级数学第一学期期末检测试题含解析_第4页
四川省营山县2025届九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省营山县2025届九年级数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm2.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长为()A.2 B.3 C.2 D.33.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上.若,则CD的长为()A.1 B. C. D.24.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是()A. B. C. D.5.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m6.二次函数y=x2-2x+3的最小值是()A.-2B.2C.-1D.17.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-38.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<49.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm10.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A.不能构成三角形 B.这个三角形是等腰三角形C.这个三角形是直角三角形 D.这个三角形是钝角三角形二、填空题(每小题3分,共24分)11.点关于原点对称的点为_____.12.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.13.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为,则可列方程为____________________.14.如图,点、在上,点在轴的正半轴上,点是上第一象限内的一点,若,则圆心的坐标为__.15.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是_____.16.如图,是半圆的直径,,则的度数是_______.17.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.18.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为.三、解答题(共66分)19.(10分)已知关于x的方程(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k的取值范围20.(6分)如图,抛物线y=﹣x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)当点P在线段OB上运动时,直线1交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.21.(6分)定义:如果函数C:()的图象经过点(m,n)、(-m,-n),那么我们称函数C为对称点函数,这对点叫做对称点函数的友好点.例如:函数经过点(1,2)、(-1,-2),则函数是对称点函数,点(1,2)、(-1,-2)叫做对称点函数的友好点.(1)填空:对称点函数一个友好点是(3,3),则b=,c=;(2)对称点函数一个友好点是(2b,n),当2b≤x≤2时,此函数的最大值为,最小值为,且=4,求b的值;(3)对称点函数()的友好点是M、N(点M在点N的上方),函数图象与y轴交于点A.把线段AM绕原点O顺时针旋转90°,得到它的对应线段A′M′.若线段A′M′与该函数的图象有且只有一个公共点时,结合函数图象,直接写出a的取值范围.22.(8分)已知:如图,在Rt△ABC中,∠ACB=90°,BC="3",tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系(1)求过A、B、O三点的抛物线解析式;(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.23.(8分)某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学代表学校参加全市汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.(8分)在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?25.(10分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.(1)求抛物线的解析式和,两点的坐标;(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.26.(10分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.2、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到,则利用垂径定理得到OB⊥AC,所以∠ABO=∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【详解】连接OB,如图:

∵AB=BC,

∴,

∴OB⊥AC,

∴OB平分∠ABC,

∴∠ABO=∠ABC=×120°=60°,

∵OA=OB,

∴∠OAB=60°,

∵AD为直径,

∴∠ABD=90°,

在Rt△ABD中,AB=AD=3,

∴BD=.故选D.【点睛】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.3、D【分析】由直角三角形的性质可得AB=2,BC=2AB=4,由旋转的性质可得AD=AB,可证△ADB是等边三角形,可得BD=AB=2,即可求解.【详解】解:∵AC=,∠B=60°,∠BAC=90°

∴AB=2,BC=2AB=4,

∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,

∴AD=AB,且∠B=60°

∴△ADB是等边三角形

∴BD=AB=2,

∴CD=BC-BD=4-2=2

故选:D.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键.4、C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.5、C【分析】迎水坡AB的坡比为3:4得出,再根据BC=6m得出AC的值,再根据勾股定理求解即可.【详解】由题意得∴∴故选:C.【点睛】本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.6、B【解析】试题解析:因为原式=x1-1x+1+1=(x-1)11,所以原式有最小值,最小值是1.故选B.7、D【解析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-1x,

x2+1x=0,

x(x+1)=0,

解得:x1=0,x2=-1.

故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.8、C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9、C【解析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,

由题意得,,

解得,x=75,

则x+40=115,故选C.10、C【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,问题得解.【详解】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵12+()2=()2,∴该三角形是直角三角形,故选:C.【点睛】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据平面直角坐标系中,关于原点的对称点的坐标变化规律,即可得到答案.【详解】∵平面直角坐标系中,关于原点的对称点的横纵坐标分别互为相反数,∴点关于原点对称点的坐标为.故答案是:.【点睛】本题主要考查平面直角坐标系中,关于原点的对称点的坐标变化规律,掌握关于原点的对称点的横纵坐标分别互为相反数,是解题的关键.12、【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【详解】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π()2=,所以“小鸡正在圆圈内”啄食的概率为:故答案为:【点睛】本题考查几何概率,掌握正方形面积公式正确计算是解题关键.13、【分析】根据连续两次下调后,该楼盘的价格为每平方米5265元,可得出一元二次方程.【详解】根据题意可得,楼盘原价为每平方米6500元,每次下调的百分率为,经过两次下调即为,最终价格为每平方米5265元.故得:【点睛】本题主要考察了一元二次方程的应用,熟练掌握解平均变化率的相关方程题时解题的关键.14、【分析】分别过点B,C作x轴的垂线,垂足分别为E,F,先通过圆周角定理可得出∠BAC=90°,再证明△BEA≌△AFC,得出AE=CF=4,再根据AO=AE-OE可得出结果.【详解】解:分别过点B,C作x轴的垂线,垂足分别为E,F,∵∠D=45°,∴∠BAC=90°.∴∠BAE+∠ABE=90°,∠BAE+∠CAF=90°,∴∠ABE=∠CAF,又AB=AC,∠AEB=∠AFC=90°,∴△BEA≌△AFC(AAS),∴AE=CF,又∵B,C的坐标为、,∴OE=1,CF=4,∴OA=AE-OE=CF-OE=1.∴点A的坐标为(1,0).故答案为:(1,0).【点睛】本题主要考查圆周角定理,以及全等三角形的判定与性质,根据已知条件作辅助线构造出全等三角形是解题的关键.15、x<﹣2或0<x<1【分析】根据两函数图象的上下位置关系结合交点横坐标即可找出不等式的解集,此题得解.【详解】解:观察函数图象可发现:当x<-2或0<x<1时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是当x<-2或0<x<1.故答案为当x<-2或0<x<1.【点睛】本题是一道一次函数与反比例函数相结合的题目,根据图象得出一次函数与反比例函数交点横坐标是解题的关键.16、130【分析】根据AB为直径,得到∠ACB=90°,进而求出∠ABC,再根据圆内接四边形性质即可求出∠D.【详解】解:∵AB为直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=90°-40°=50°,∵四边形ABCD是圆内接四边形,∴∠D=180°-∠ABC=130°.故答案为:130°【点睛】本题考查了“直径所对的角是圆周角”、“圆内接四边形对角互补”、“直角三角形两锐角互余”等定理,熟知相关定理,并能灵活运用是解题关键.17、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.18、π.【详解】解:如图连接OE、OF.∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长=.故答案为π.考点:切线的性质;平行四边形的性质;弧长的计算.三、解答题(共66分)19、(1)证明见解析;(2)【分析】(1)证出根的判别式即可完成;(2)将k视为数,求出方程的两个根,即可求出k的取值范围.【详解】(1)证明:∴方程总有两个实数根(2)∴∴∵方程有一个小于1的正根∴∴【点睛】本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键.20、(1)A(﹣1,0),B(4,0),C(0,2);(2)m=2时,四边形CQMD是平行四边形;(3)存在,点Q(3,2)或(﹣1,0).【分析】(1)令抛物线关系式中的x=0或y=0,分别求出y、x的值,进而求出与x轴,y轴的交点坐标;(2)用m表示出点Q,M的纵坐标,进而表示QM的长,使CD=QM,即可求出m的值;(3)分三种情况进行解答,即①∠MBQ=90°,②∠MQB=90°,③∠QMB=90°分别画出相应图形进行解答.【详解】解:(1)抛物线y=﹣x2+x+2,当x=0时,y=2,因此点C(0,2),当y=0时,即:﹣x2+x+2=0,解得x1=4,x2=﹣1,因此点A(﹣1,0),B(4,0),故:A(﹣1,0),B(4,0),C(0,2);(2)∵点D与点C关于x轴对称,∴点D(0,﹣2),CD=4,设直线BD的关系式为y=kx+b,把D(0,﹣2),B(4,0)代入得,,解得,k=,b=﹣2,∴直线BD的关系式为y=x﹣2设M(m,m﹣2),Q(m,﹣m2+m+2),∴QM=﹣m2+m+2﹣m+2)=﹣m2+m+4,当QM=CD时,四边形CQMD是平行四边形;∴﹣m2+m+4=4,解得m1=0(舍去),m2=2,答:m=2时,四边形CQMD是平行四边形;(3)在Rt△BOD中,OD=2,OB=4,因此OB=2OD,①若∠MBQ=90°时,如图1所示,当△QBM∽△BOD时,QP=2PB,设点P的横坐标为x,则QP=﹣x2+x+2,PB=4﹣x,于是﹣x2+x+2=2(4﹣x),解得,x1=3,x2=4(舍去),当x=3时,PB=4﹣3=1,∴PQ=2PB=2,∴点Q的坐标为(3,2);②若∠MQB=90°时,如图2所示,此时点P、Q与点A重合,∴Q(﹣1,0);③由于点M在直线BD上,因此∠QMB≠90°,这种情况不存在△QBM∽△BOD.综上所述,点P在线段AB上运动过程中,存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似,点Q(3,2)或(﹣1,0).【点睛】本题考查的是动态几何中的相似三角形问题.考查的知识点有二次函数的性质、平行四边形的判定、两点间的距离公式、相似三角形的判定,利用二次函数性质设Q的坐标是解题关键.注意要考虑全各种情况,不要漏解.21、(1)b=1,c=9;(2)b=0或b=或b=;(3)或【分析】(1)由题可知函数图象过点(3,3),(-3,-3),代入即可求出b,c的值;(2)代入函数的友好点,求出函数解析式y=x2+2bx-4b2=(x+b)2-5b2,再根据二次函数的图象及性质分三种情况分析讨论;(3)由推出,再根据“友好点”是M(2,2)N(-2,-2)旋转后M′(2,-2)A′(-4a,0),将(-4a,0)代得出,根据图象即可得出结论.【详解】解:(1)由题可知函数图象过点(3,3),(-3,-3),代入函数(),得解得:b=1,c=9;(2)由题意得另一个友好数为(-2b,-n)∴-n=4b2-4b2+c∴c=-n∴y=x2+2bx-n把(2b,n)代入y=x2+2bx-nn=4b2+4b2-n∴n=4b2∴y=x2+2bx-4b2=(x+b)2-5b2当-b<2b即b>0时∵抛物线开口向上∴在对称轴右侧,y随x增大而增大∴当x=2b时,y1=4b2当x=2时,y2=-4b2+4b+4∵y1-y2=4∴-4b2+4b+4-4b2=4∴-8b2+4b=0∴b1=0(舍)b2=当2<-b,即b<-2时在对称轴左侧,y随x增大而减小∴当x=2b时,y1=4b2当x=2时,y2=-4b2+4b+4∵y1-y2=4∴4b2+4b2-4b-4=4∴8b2-4b-8=0∴2b2-b-2=0b=(舍)当2b≤-b≤2,即-2≤b≤0时y2=-5b2当x=2时,y1=-4b2+4b+4∵y1-y2=4∴-4b2+4b+4+5b2=4∴b2+4b=0∴b1=0,b2=-4(舍)当x=2b时,y1=4b2∵y1-y2=4∴9b2=4∴b=(舍)b=∴b=0或b=或b=;(3)推出“友好点”是M(2,2)N(-2,-2)旋转后M’(2,-2)A’(-4a,0)将(-4a,0)代入当a>0时当抛物线经过A′后有两个交点∴当a<0时,当抛物线经过A′点以后,开始于抛物线有一个交点∴综上:或.【点睛】本题是一道关于二次函数的综合题目,难度很大,理解“友好点”概念,综合利用二次函数的图象及其性质以是解此题的关键.解决此题还需要较强的数形结合的能力以及较强的计算能力.22、(1)y=;(2)当t=时,d有最大值,最大值为2;(3)在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.【解析】(1)在Rt△ABC中,根据∠BAC的正切函数可求得AC=1,再根据勾股定理求得AB,设OC=m,连接OH由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,即得AH=AB-BH=2,OA=1-m.在Rt△AOH中,根据勾股定理可求得m的值,即可得到点O、A、B的坐标,根据抛物线的对称性可设过A、B、O三点的抛物线的解析式为:y=ax(x-),再把B点坐标代入即可求得结果;(2)设直线AB的解析式为y=kx+b,根据待定系数法求得直线AB的解析式,设动点P(t,),则M(t,),先表示出d关于t的函数关系式,再根据二次函数的性质即可求得结果;(3)设抛物线y=的顶点为D,先求得抛物线的对称轴,与抛物线的顶点坐标,根据抛物线的对称性,A、O两点关于对称轴对称.分AO为平行四边形的对角线时,AO为平行四边形的边时,根据平行四边形的性质求解即可.【详解】(1)在Rt△ABC中,∵BC=3,tan∠BAC=,∴AC=1.∴AB=.设OC=m,连接OH由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,∴AH=AB-BH=2,OA=1-m.∴在Rt△AOH中,OH2+AH2=OA2,即m2+22=(1-m)2,得m=.∴OC=,OA=AC-OC=,∴O(0,0)A(,0),B(-,3).设过A、B、O三点的抛物线的解析式为:y=ax(x-).把x=,y=3代入解析式,得a=.∴y=x(x-)=.即过A、B、O三点的抛物线的解析式为y=.(2)设直线AB的解析式为y=kx+b,根据题意得,解之得,.∴直线AB的解析式为y=.设动点P(t,),则M(t,).∴d=()—()=—=∴当t=时,d有最大值,最大值为2.(3)设抛物线y=的顶点为D.∵y==,∴抛物线的对称轴x=,顶点D(,-).根据抛物线的对称性,A、O两点关于对称轴对称.当AO为平行四边形的对角线时,抛物线的顶点D以及点D关于x轴对称的点F与A、O四点为顶点的四边形一定是平行四边形.这时点D即为点E,所以E点坐标为().当AO为平行四边形的边时,由OA=,知抛物线存在点E的横坐标为或,即或,分别把x=和x=代入二次函数解析式y=中,得点E(,)或E(-,).所以在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.考点:二次函数的综合题点评:此题综合性较强,难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想与方程思想的应用.23、(1)见解析;(2)【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【详解】(1)画树状图得:(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论