版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
III.Artificialintelligenceandtheeconomy:implicationsforcentralbanks
Keytakeaways
•Machinelearningmodelsexcelatharnessingmassivecomputingpowertoimposestructureonunstructureddata,givingrisetoartificialintelligence(AI)applicationsthathaveseenrapidandwidespreadadoptioninmanyfields.
•TheriseofAIhasimplicationsforthefinancialsystemanditsstability,aswellasformacroeconomicoutcomesviachangesinaggregatesupply(throughproductivity)anddemand(throughinvestment,consumptionandwages).
•CentralbanksaredirectlyaffectedbyAI’simpact,bothintheirroleasstewardsofmonetaryandfinancialstabilityandasusersofAItools.Toaddressemergingchallenges,theyneedtoanticipateAI’seffectsacrosstheeconomyandharnessAIintheirownoperations.
•Dataavailabilityanddatagovernancearekeyenablingfactorsforcentralbanks’useofAI,andbothrelyoncooperationalongseveralfronts.Centralbanksneedtocometogetherandfostera“communityofpractice”toshareknowledge,data,bestpracticesandAItools.
Introduction
Theadventoflargelanguagemodels(LLMs)hascatapultedgenerativeartificialintelligence(genAI)intopopulardiscourse.LLMshavetransformedthewaypeopleinteractwithcomputers–awayfromcodeandprogramminginterfacestoordinarytextandspeech.ThisabilitytoconversethroughordinarylanguageaswellasgenAI’shuman-likecapabilitiesincreatingcontenthavecapturedourcollectiveimagination.
Belowthesurface,theunderlyingmathematicsofthelatestAImodelsfollowbasicprinciplesthatwouldbefamiliartoearliergenerationsofcomputerscientists.Wordsorsentencesareconvertedintoarraysofnumbers,makingthemamenabletoarithmeticoperationsandgeometricmanipulationsthatcomputersexcelat.
Whatisnewistheabilitytobringmathematicalorderatscaletoeverydayunstructureddata,whethertheybetext,images,videosormusic.RecentAIdevelopmentshavebeenenabledbytwofactors.Firstistheaccumulationofvastreservoirsofdata.ThelatestLLMsdrawonthetotalityoftextualandaudiovisualinformationavailableontheinternet.Secondisthemassivecomputingpowerofthelatestgenerationofhardware.TheseelementsturnAImodelsintohighlyrefinedpredictionmachines,possessingaremarkableabilitytodetectpatternsindataandfillingaps.
Thereisanactivedebateonwhetherenhancedpatternrecognitionissufficienttoapproximate“artificialgeneralintelligence”(AGI),renderingAIwithfullhuman-likecognitivecapabilities.IrrespectiveofwhetherAGIcanbeattained,theabilitytoimposestructureonunstructureddatahasalreadyunlockednewcapabilitiesinmanytasksthateludedearliergenerationsofAItools.1ThenewgenerationofAImodelscouldbeagamechangerformanyactivitiesandhaveaprofoundimpactonthebroadereconomyandthefinancialsystem.Notleast,thesesamecapabilities
BISAnnualEconomicReport202491
canbeharnessedbycentralbanksinpursuitoftheirpolicyobjectives,potentiallytransformingkeyareasoftheiroperations.
TheeconomicpotentialofAIhassetoffagoldrushacrosstheeconomy.TheadoptionofLLMsandgenAItoolsisproceedingatsuchbreathtakingspeedthatiteasilyoutpacespreviouswavesoftechnologyadoption(Graph1.A).Forexample,ChatGPTalonereachedonemillionusersinlessthanaweekandnearlyhalfofUShouseholdshaveusedgenAItoolsinthepast12months.Mirroringrapidadoptionbyusers,firmsarealreadyintegratingAIintheirdailyoperations:globalsurveyevidencesuggestsfirmsinallindustriesusegenAItools(Graph1.B).Todoso,theyareinvestingheavilyinAItechnologytotailorittotheirspecificneedsandhaveembarkedonahiringspreeofworkerswithAI-relatedskills(Graph1.C).Mostfirmsexpectthesetrendstoonlyaccelerate.2
Thischapterlaysouttheimplicationsofthesedevelopmentsforcentralbanks,whichimpingeonthemintwoimportantways.
First,AIwillinfluencecentralbanks’coreactivitiesasstewardsoftheeconomy.Centralbankmandatesrevolvearoundpriceandfinancialstability.AIwillaffectfinancialsystemsaswellasproductivity,consumption,investmentandlabourmarkets,whichthemselveshavedirecteffectsonpriceandfinancialstability.WidespreadadoptionofAIcouldalsoenhancefirms’abilitytoquicklyadjustpricesinresponsetomacroeconomicchanges,withrepercussionsforinflationdynamics.Thesedevelopmentsarethereforeofparamountconcerntocentralbanks.
Second,theuseofAIwillhaveadirectbearingontheoperationsofcentralbanksthroughitsimpactonthefinancialsystem.Forone,financialinstitutionssuchascommercialbanksincreasinglyemployAItools,whichwillchangehowtheyinteractwithandaresupervisedbycentralbanks.Moreover,centralbanksandotherauthoritiesarelikelytoincreasinglyuseAIinpursuingtheirmissionsinmonetarypolicy,supervisionandfinancialstability.
TheadoptionofAI1Graph1
A.TheadoptionofAIishappeningfast…
80
60
40
20
0
02468101214161820
%ofUShouseholds
Yearssinceintroduction
ChatGPT
SocialmediaElectricpower
SmartphoneInternet
Computer
B.…andinallsectors…
l
Advancedindustrie Business,legalandprofessionalserviceConsume
goods/retaiEnergyandmaterial
s
s
r
s
s
s
a
a
s
Financialservice Healthcare,pharmandmedicalproduct Technology,mediandtelecom
0255075100%ofrespondents
ExposuretogenerativeAItools:
Regularuser
OccasionaluserNoexposure
C.…whileinvestmentsinAI
companiesandjobopeningssoar
250
1.5
200
1.2
150
0.9
100
0.6
USDbn%oftotaljobpostings
50
0.3
0
0.0
12141618202224
CapitalinvestedinAIcompanies(lhs)PercentageofAIjobpostings(rhs):
Mean
Interquartilerange
1Seetechnicalannexfordetails.
Sources:Allcot(2023);CominandHobijn(2004);Maslejetal(2024);McKinsey&Company(2023);IMF,WorldEconomicOutlook;USCensusBureau,CurrentPopulationSurvey;InternationalTelecommunicationUnion(ITU);PitchBookDataInc;OurWorldinData;Statista,DigitalMarketInsights;BIS.
92BISAnnualEconomicReport2024
Overall,therapidandwidespreadadoptionofAIimpliesthatthereisanurgentneedforcentralbankstoraisetheirgame.Toaddressthenewchallenges,centralbanksneedtoupgradetheircapabilitiesbothasinformedobserversoftheeffectsoftechnologicaladvancementsaswellasusersofthetechnologyitself.Asobservers,centralbanksneedtostayaheadoftheimpactofAIoneconomicactivitythroughitseffectsonaggregatesupplyanddemand.Asusers,theyneedtobuildexpertiseinincorporatingAIandnon-traditionaldataintheirownanalyticaltools.Centralbankswillfaceimportanttrade-offsinusingexternalvsinternalAImodels,aswellasincollectingandprovidingin-housedatavspurchasingthemfromexternalproviders.Togetherwiththecentralityofdata,theriseofAIwillrequirearethinkofcentralbanks’traditionalrolesascompilers,usersandprovidersofdata.ToharnessthebenefitsofAI,collaborationandthesharingofexperiencesemergeaskeyavenuesforcentralbankstomitigatethesetrade-offs,inparticularbyreducingthedemandsoninformationtechnology(IT)infrastructureandhumancapital.Centralbanksneedtocometogethertoforma“communityofpractice”toshareknowledge,data,bestpracticesandAItools.
ThechapterstartswithanoverviewofdevelopmentsinAI,providingadeepdiveintotheunderlyingtechnology.ItthenexaminestheimplicationsoftheriseofAIforthefinancialsector.ThediscussionincludescurrentusecasesofAIbyfinancialinstitutionsandimplicationsforfinancialstability.Italsooutlinestheemergingopportunitiesandchallengesandtheimplicationsforcentralbanks,includinghowtheycanharnessAItofulfiltheirpolicyobjectives.ThechapterthendiscusseshowAIaffectsfirms’productivecapacityandinvestment,aswellaslabourmarketsandhouseholdconsumption,andhowthesechangesinaggregatedemandandsupplyaffectinflationdynamics.Thechapterconcludesbyexaminingthetrade-offsarisingfromtheuseofAIandthecentralityofdataforcentralbanksandregulatoryauthorities.Indoingso,ithighlightstheurgentneedforcentralbankstocooperate.
Developmentsinartificialintelligence
Artificialintelligenceisabroadterm,referringtocomputersystemsperformingtasksthatrequirehuman-likeintelligence.WhiletherootsofAIcanbetracedbacktothelate1950s,theadvancesinthefieldofmachinelearninginthe1990slaidthefoundationsofthecurrentgenerationofAImodels.Machinelearningisacollectivetermreferringtotechniquesdesignedtodetectpatternsinthedataandusetheminpredictionortoaiddecision-making.3
Thedevelopmentofdeeplearninginthe2010sconstitutedthenextbigleap.Deeplearningusesneuralnetworks,perhapsthemostimportanttechniqueinmachinelearning,underpinningeverydayapplicationssuchasfacialrecognitionorvoiceassistants.Themainbuildingblockofneuralnetworksisartificialneurons,whichtakemultipleinputvaluesandtransformthemtooutputasasetofnumbersthatcanbereadilyanalysed.Theartificialneuronsareorganisedtoformasequenceoflayersthatcanbestacked:theneuronsofthefirstlayertaketheinputdataandoutputanactivationvalue.Subsequentlayersthentaketheoutputofthepreviouslayerasinput,transformitandoutputanothervalue,andsoforth.Anetwork’sdepthreferstothenumberoflayers.Morelayersallowneuralnetworkstocaptureincreasinglycomplexrelationshipsinthedata.Theweightsdeterminingthestrengthofconnectionsbetweendifferentneuronsandlayersarecollectivelycalledparameters,whichareimproved(knownaslearning)iterativelyduringtraining.Deepernetworkswithmoreparametersrequiremoretrainingdatabutpredictmoreaccurately.
Akeyadvantageofdeeplearningmodelsistheirabilitytoworkwithunstructureddata.Theyachievethisby“embedding”qualitative,categoricalorvisualdata,such
BISAnnualEconomicReport202493
aswords,sentences,proteinsorimages,intoarraysofnumbers–anapproachpioneeredatscalebytheWord2Vecmodel(seeBoxA).Thesearraysofnumbers(ievectors)areinterpretedaspointsinavectorspace.Thedistancebetweenvectorsconveyssomedimensionofsimilarity,enablingalgebraicmanipulationsonwhatisoriginallyqualitativedata.Forexample,thevectorlinkingtheembeddingsofthewords“big”and“biggest”isverysimilartothatbetween“small”and“smallest”.Word2Vecpredictsawordbasedonthesurroundingwordsinasentence.Thebodyoftextusedfortheembeddingexerciseisdrawnfromtheopeninternetthroughthe“commoncrawl”database.Theconceptofembeddingcanbetakenfurtherintomappingthespaceofeconomicideas,uncoveringlatentviewpointsormethodologicalapproachesofindividualeconomistsorinstitutions(“personas”).Thespaceofideascanbelinkedtoconcretepolicyactions,includingmonetarypolicydecisions.4
TheadventofLLMsallowsneuralnetworkstoaccessthewholecontextofawordratherthanjustitsneighbourinthesentence.UnlikeWord2Vec,LLMscannowcapturethenuancesoftranslatinguncommonlanguages,answerambiguousquestionsoranalysethesentimentoftexts.LLMsarebasedonthetransformermodel(seeBoxB).Transformersrelyon“multi-headedattention”and“positionalencoding”mechanismstoefficientlyevaluatethecontextofanywordinthedocument.Thecontextinfluenceshowwordswithmultiplemeaningsmapintoarraysofnumbers.Forexample,“bond”couldrefertoafixedincomesecurity,aconnectionorlink,orafamousespionagecharacter.Dependingonthecontext,the“bond”embeddingvectorliesgeometricallyclosertowordssuchas“treasury”,“unconventional”and“policy”;to“family”and“cultural”;orto“spy”and“martini”.ThesedevelopmentshaveenabledAItomovefromnarrowsystemsthatsolveonespecifictasktomoregeneralsystemsthatdealwithawiderangeoftasks.
LLMsarealeadingexampleofgenAIapplicationsbecauseoftheircapacitytounderstandandgenerateaccurateresponseswithminimalorevennopriorexamples(so-calledfew-shotorzero-shotlearningabilities).GenAIreferstoAIscapableofgeneratingcontent,includingtext,imagesormusic,fromanaturallanguageprompt.Thepromptscontaininstructionsinplainlanguageorexamplesofwhatuserswantfromthemodel.BeforeLLMs,machinelearningmodelsweretrainedtosolveonetask(egimageclassification,sentimentanalysisortranslatingfromFrenchtoEnglish).Itrequiredtheusertocode,trainandrolloutthemodelintoproductionafteracquiringsufficienttrainingdata.Thisprocedurewaspossibleforonlyselectedcompanieswithresearchersandengineerswithspecificskills.AnLLMhasfew-shotlearningabilitiesinthatitcanbegivenataskinplainlanguage.Thereisnoneedforcoding,trainingoracquiringtrainingdata.Moreover,itdisplaysconsiderableversatilityintherangeoftasksitcantakeon.Itcanbeusedtofirstclassifyanimage,thenanalysethesentimentofaparagraphandfinallytranslateitintoanylanguage.Therefore,LLMsandgenAIhaveenabledpeopleusingordinarylanguagetoautomatetasksthatwerepreviouslyperformedbyhighlyspecialisedmodels.
ThecapabilitiesofthemostrecentcropofAImodelsareunderpinnedbyadvancesindataandcomputingpower.Theincreasingavailabilityofdataplaysakeyroleintrainingandimprovingmodels.Themoredataamodelistrainedon,themorecapableitusuallybecomes.Furthermore,machinelearningmodelswithmoreparametersimprovepredictionswhentrainedwithsufficientdata.Incontrasttothepreviousconventionalwisdomthat“over-parameterisation”degradestheforecastingabilityofmodels,morerecentevidencepointstoaremarkableresilienceofmachinelearningmodelstoover-parameterisation.Asaconsequence,LLMswithwelldesignedlearningmechanismscanprovidemoreaccuratepredictionsthantraditionalparametricmodelsindiversescenariossuchascomputervision,signalprocessingandnaturallanguageprocessing(NLP).5
94BISAnnualEconomicReport2024
BoxA
Wordsasvectors:aprimeronembeddings
Modernmachinelearningmethodsexcelatimposingmathematicalstructureonunstructureddata,allowingmassivecomputingpowertobeunleashedinprocessinginformation.Themappingthatimposessuchstructureisknownasan“embedding”,andthecanonicalexampleistheembeddingofwordsaspointsinavectorspace,sothateachwordisassociatedwithanarrayofnumbers.
alligatorhawk
turtle
hong-kongmontrealtoronto
glassesrobetiara
dwarf
impunicorn
christopherjosephpeyton
businessmanjudge
psychiatristboxing
jogging sleddingarkansasmarylandoregon
cloudmonsoon typhoon
AnearlyexampleofwordembeddingisWord2Vec,1whichmapsawordtoanembeddingvectorofafewhundreddimensionsthatislearnedbyaneuralnetwork.Theneuralnetworkisrefinedbybeingaskedtopredictthecentrewordinashortwindowoftext(typicallyfourtoeightwordsbeforeandafterthecentreword)andbeingscoredbyitssuccessrate.Thisprocedureisknownasthe“ContinuousBagofWords”methodbecauseallsurroundingwordsarefirstaddedintoasinglevector.TheWord2Veclearningalgorithmcomputesthepredictionerroroverallthewordsinacorpus(whichcanbetrillionsofwords)anditerativelyadjuststheembeddingvectorforeachwordtoreducethisclassificationerrorandoptimiseprediction.
Embeddingdistancesbetween420wordsinninecategoriesofwords1
GraphA1
hawk
alligator
turtle
hong-kongmontrealtoronto
Selectedwords
scale:
-1-0.500.51
1Cosinesimilaritymatrixbetween420words.Thevaluerangesfrom–1(completelydissimilar)to1(completelysimilar),with0indicatingorthogonality(nosimilarity).They-axislabelscorrespondtoselected420words;theaxislabelsindicatethecategoriestowhichthesewordsbelong.
Source:AdaptedfromGrandetal(2022).
Theseproceduresresultinsimilarembeddingsforwordswithsimilarmeaning,inthesensethatthedistancebetweenthevectorsrepresentingthetwowordsismathematicallyclose.Forexample,theembeddingoftheword“cat”isclosetothatoftheword“mouse”,andthatof“Mexico”closeto“Indonesia”.GraphA1illustratesthe“cosinesimilarity”between420wordsinninedifferentwordcategories(animals,citiesetc).
BISAnnualEconomicReport202495
Cosinesimilaritymeasuresthecosineoftheanglebetweentwonon-zerovectors,reflectinghowsimilartheirdirectionsare.Itcalculatesthedotproductofthevectorsdividedbytheproductoftheirnorms.Thevaluerangesfrom–1(completelydissimilar)to1(completelysimilar),with0indicatingorthogonality(nosimilarity).InGraphA1,thecolourschemeindicatesthedegreeofsimilaritybetweenwordpairs.Thediagonalofthismatrixconsistsof1everywhere,asthediagonalmeasureseachword’ssimilaritywithitself.Darkerredindicateshighcosinesimilarity,whilelighterredindicateslowsimilarity.GraphA1showsthatwordsfromthesamecategory(eganimals)haveahighcosinesimilarity,whiletheyhavelowcosinesimilaritywithwordsfromothercategories(egcitiesorsports).Theresultingvectorsgiverisetoembeddingsthatcanbeusedinvariousnaturallanguageprocessingtaskssuchastextclassification,sentimentanalysisandmachinetranslationwithminimalornohuman-labelleddata.
Theembeddingsuncoverthemathematicalrelationshipsbetweenwords.Notonlyaresimilarwords
placedclosertogetherinthevectorspace,butthesemanticconnectionsarealsocapturedthroughthe
mathematicalrelationshipsbetweenthevectorembeddingofeachword.Forinstance,analogieslike“manis
towomanaskingisto?”canbesolveddirectlyfromvectoradditionandsubtractionoperations:queen=
woman+king–man.Theseembeddingrelationshipsalsoapplytothelinkbetweencountriesandtheir
capitals(Quito=Ecuador+Oslo–Norway),opposites(unethical=ethical+impossibly–possibly),andthe
tenseofwords(swam=swimming+walked–walking).Semanticrelationshipsbetweenwordscanalsobe
projectedtoconcepts.GraphA2illustrateshowbyprojectingthewordembeddingsofanimalstothevector
representingvariationinsize(iethedifferencebetweenthewordembeddingfor“large”and“small”),the
animalsaremostlysortedaccordingtotheirsizes.
Embeddingprojectionofanimalwordsontosizeconceptvector1GraphA2
oc
,horsehicken
otiger
moose
large
5
ha
mster
d
mosquitoogo
salmon
r
hino
0
mouse
goldfish
butt
erfly
dolphin
–5
sm
●
all
bee·duck
whale
–10–5051015
1Two-dimensionalillustration,astheembeddingsareina300-dimensionalvectorspace.Source:AdaptedfromGrandetal(2022).
Word2Vechassubsequentlybeensupersededbyothermethodsthatachievemoremeaningfulembedding,suchasGloVe,ELMo,BERTandGPT,2byemployingmoresophisticatedlearningofconceptswithmorecomplexneuralnetworkarchitectures.Thelatestmodels(BERTandGPT)relyonthetransformerarchitecture(seeBoxB).BERTandGPTarereferredtoaslanguagemodels,notwordembeddings.Theyusethewholetextascontext,multiplepathstocapturedifferentmeaningsandneuralnetworkswithtrillionsoftunableparameters.
1Mikolovetal(2013)2Penningtonetal(2014),Petersetal(2018),Devlinetal(2018)andBrownetal(2019).
96BISAnnualEconomicReport2024
Animplicationisthatmorecapablemodelstendtobelargermodelsthatneedmoredata.Biggermodelsandlargerdatasetsthereforegotogetherandincreasecomputationaldemands.Theuseofadvancedtechniquesonvasttrovesofdatawouldnothavebeenpossiblewithoutsubstantialincreasesincomputingpower–inparticular,thecomputationalresourcesemployedbyAIsystems–whichhasbeendoublingeverysixmonths.6Theinterplaybetweenlargeamountsofdataandcomputationalresourcesimpliesthatjustahandfulofcompaniesprovidecutting-edgeLLMs,anissuerevisitedlaterinthechapter.
SomecommentatorshavearguedthatAIhasthepotentialtobecomethenextgeneral-purposetechnology,profoundlyimpactingtheeconomyandsociety.General-purposetechnologies,likeelectricityortheinternet,eventuallyachievewidespreadusage,giverisetoversatileapplicationsandgeneratespillovereffectsthatcanimproveothertechnologies.Theadoptionpatternofgeneral-purposetechnologiestypicallyfollowsaJ-curve:itisslowatfirst,buteventuallyaccelerates.Overtime,thepaceoftechnologyadoptionhasbeenspeedingup.Whileittookelectricityorthetelephonedecadestoreachwidespreadadoption,smartphonesaccomplishedthesameinlessthanadecade.AIfeaturestwodistinctcharacteristicsthatsuggestanevensteeperJ-curve.Firstisitsremarkablespeedofadoption,reflectingeaseofuseandnegligiblecostforusers.Secondisitswidespreaduseatanearlystagebyhouseholdsaswellasfirmsinallindustries.
Ofcourse,thereissubstantialuncertaintyaboutthelong-termcapabilitiesofgenAI.CurrentLLMscanfailelementarylogicalreasoningtasksandstrugglewithcounterfactualreasoning,asillustratedinrecentBISwork.7Forexample,whenposedwithalogicalpuzzlethatdemandsreasoningabouttheknowledgeofothersandaboutcounterfactuals,LLMsdisplayadistinctivepatternoffailure.Theyperformflawlesslywhenpresentedwiththeoriginalwordingofapuzzle,whichtheyhavelikelyseenduringtheirtraining.Theyfalterwhenthesameproblemispresentedwithsmallchangesofinnocuousdetailssuchasnamesanddates,suggestingalackoftrueunderstandingoftheunderlyinglogicofstatements.Ultimately,currentLLMsdonotknowwhattheydonotknow.LLMsalsosufferfromthehallucinationproblem:theycanpresentafactuallyincorrectanswerasifitwerecorrect,andeveninventsecondarysourcestobackuptheirfakeclaims.Unfortunately,hallucinationsareafeatureratherthanabuginthesemodels.LLMshallucinatebecausetheyaretrainedtopredictthestatisticallyplausiblewordbasedonsomeinput.Buttheycannotdistinguishwhatislinguisticallyprobablefromwhatisfactuallycorrect.
Dotheseproblemsmerelyreflectthelimitsposedbythesizeofthetrainingdatasetandthenumberofmodelparameters?Ordotheyreflectmorefundamentallimitstoknowledgethatisacquiredthroughlanguagealone?OptimistsacknowledgecurrentlimitationsbutemphasisethepotentialofLLMstoexceedhumanperformanceincertaindomains.Inparticular,theyarguethattermssuchas“reason”,“knowledge”and“learning”rightlyapplytosuchmodels.ScepticspointoutthelimitationsofLLMsinreasoningandplanning.TheyarguethatthemainlimitationofLLMsderivesfromtheirexclusiverelianceonlanguageasthemediumofknowledge.AsLLMsareconfinedtointeractingwiththeworldpurelythroughlanguage,theylackthetacitnon-linguistic,sharedunderstandingthatcanbeacquiredonlythroughactiveengagementwiththerealworld.8
WhetherAIwilleventuallybeabletoperformtasksthatrequiredeeplogicalreasoninghasimplicationsforitslong-runeconomicimpact.AssessingwhichtaskswillbeimpactedbyAIdependsonthespecificcognitiveabilitiesrequiredinthosetasks.Thediscussionabovesuggeststhat,atleastinthenearterm,AIfaceschallengesinreachinghuman-likeperformance.Whileitmaybeabletoperformtasksthatrequiremoderatecognitiveabilitiesandevendevelop“emergent”capabilities,itisnotyetabletoperformtasksthatrequirelogicalreasoningandjudgment.
BISAnnualEconomicReport202497
BoxB
Aprimeronthetransformerarchitecture
Thetransformerarchitecture1hasbeenabreakthroughinnaturallanguageprocessing(NLP),layingthefoundationforthedevelopmentofadvancedlargelanguagemodels(LLMs)suchasBERT(BidirectionalEncoderRepresentationsfromTransformers)2andGPT(GenerativePre-trainedTransformer).3Attheheartofthetransformerarchitecturearetwoinnova
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 参加涉密培训承诺书范文范本
- 2025-2030全球止吠项圈行业调研及趋势分析报告
- 2025-2030全球新能源车和充电桩高压直流继电器行业调研及趋势分析报告
- 2025年全球及中国消费后回收 (PCR) 薄膜行业头部企业市场占有率及排名调研报告
- 2025-2030全球可回收金属瓶盖和封口行业调研及趋势分析报告
- 2025年全球及中国平板电动货车行业头部企业市场占有率及排名调研报告
- 2025年全球及中国制冷空调热力膨胀阀行业头部企业市场占有率及排名调研报告
- 2025-2030全球电动门遥控器行业调研及趋势分析报告
- 2025-2030全球高精度事件计时器行业调研及趋势分析报告
- 2025年全球及中国相机腕带行业头部企业市场占有率及排名调研报告
- 《隧道工程》(第二版)课件 第1、2章 绪论、隧道工程勘测
- 设计师绩效考核
- 西方政治思想史(全)
- 寒假计划表作息时间安排表
- 四年级上册简便计算专项练习(已排版可直接下载打印)
- 高考日语基础归纳总结与练习(一轮复习)
- 煤场用车辆倒运煤的方案
- 《预防犯罪》课件
- 【企业作业成本在上海汽车集团中的应用研究案例7300字(论文)】
- 《民航服务沟通技巧》教案第6课巧妙化解冲突
- 化学用语专项训练
评论
0/150
提交评论