浙江省宁波市九校2023-2024学年高二下学期期末联考数学试题_第1页
浙江省宁波市九校2023-2024学年高二下学期期末联考数学试题_第2页
浙江省宁波市九校2023-2024学年高二下学期期末联考数学试题_第3页
浙江省宁波市九校2023-2024学年高二下学期期末联考数学试题_第4页
浙江省宁波市九校2023-2024学年高二下学期期末联考数学试题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绝密★考试结束前宁波市2023学年第二学期期末九校联考高二数学试题第I卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知平面.则“两两垂直”是“两两垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.给出四组成对数据:(1);(2);(3);(4),其中样本相关系数最小的是()(提示:样本相关系数)A.(1)B.(2)C.(3)D.(4)3.已知函数,且的图象过点是的反函数,则函数()A.既是奇函数又是减函数B.既是奇函数又是增函数C.既是偶函数又是减函数D.既是偶函数又是增函数4.已知函数,先将函数的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得的图象向右平移个单位长度,得到函数的图象,则()A.B.C.D.5.在中,已知,则()A.1B.2C.3D.46.已知,则()A.0.05B.0.27C.0.68D.0.327.在正三棱锥中,侧棱,点在棱上,且.若球是正三棱锥的外接球,过点作球的截面,则所得的截面中,面积最小的截面的面积为()A.B.C.D.8.已知实数,将这7个数适当排列成一列数,满足,则满足要求的排列的个数为()A.58B.71C.85D.96二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知关于的方程在复数范围内的根为.若,则实数的值可能为()A.B.1C.0D.10.高考数学试题第二部分为多选题,共3个小题,每小题有4个选项,其中有2个或3个是正确选项,全部选对得6分,部分选对得部分分,有选错的得0分.若正确答案是2个选项,只选对1个得3分,有选错的得0分;若正确答案是3个选项,只选对1个得2分,只选对2个得4分,有选错的得0分.小明对其中的一道题完全不会,该题有两个正确选项的概率是,记为小明随机选择1个选项的得分,记为小明随机选择2个选项的得分,则()A.B.C.D.11.已知,则()A.展开式的各二项式系数的和为0B.C.D.第II卷三、填空题:本题共3小题,每小题5分,共15分.12.已知集合.若的真子集个数是3,则实数的取值范围是__________.13.已知平面向量满足与的夹角为,对任意的实数,的最小值为__________.14.已知定义在上的函数满足下列两个条件:①;②.请你写出一个符合要求的函数解析式__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数.(1)设,若是奇函数,求的值,并证明;(2)已知函数,若关于的方程在内恰有两个不同解,求实数的取值范围.16.(15分)如图,在三棱锥中,平面是以为直径的圆周上的一点,分别是上的动点,且平面,二面角的大小为.(1)求证:;(2)求证:平面;(3)当直线与平面所成的角最大时,求的值.17.(15分)4月23日是联合国教科文组织确定的“世界读书日”.为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了500名高一学生进行在线调查,得到了这500名学生的日平均阅读时间(单位:小时),并将样本数据分九组,绘制成如图所示的频率分布直方图.(1)估计该地区高一学生阅读时间的上四分位数;(2)为进一步了解这500名学生数字媒体阅读时间和纸质图书阅读时间的分配情况,从日平均阅读时间在,二组内的学生中,采用分层抽样的方法抽取了20个学生,得到均值为8,方差为3.75,现在已知这一组学生的均值为5,方差为2;求这一组学生的均值和方差;(3)以样本的频率估计概率,从该地区所有高一学生中随机抽取10名学生,用表示这10名学生中恰有名学生日平均阅读时间在内的概率,其中.当最大时,写出的值,并说明理由.18.(17分)在中,角所对的边分别为,已知.(1)若,求的面积;(2)若为锐角,外接圆半径是,求的内切圆半径的最大值.19.(17分)(1)我们学过组合恒等式,实际上可以理解为,请你利用这个观点快速求解:.(计算结果用组合数表示)(2)(i)求证:;(ii)求值:.宁波市2023学年第二学期期末九校联考高二数学试题参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题目12345678答案CDBAACBB二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.题目91011答案ACDBCBCD三、填空题:本题共3小题,每小题5分,共15分.12.13.14.分析,设,所以四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)解:(1)法一:,所以,因为是奇函数,所以,所以整理得:所以,所以法二:,因为奇函数的定义域关于原点对称,所以,则,取得,再验证是奇函数,所以.(2)和两个函数图象有两个交点,(或,得到,由,解得)又也经过定点,由图可知的取值范围是16.(15分)解:(1)因为平面平面,平面平面,所以(2)因为平面平面,所以平面平面,因为是以为直径的圆周上一点,所以,又平面平面平面,所以平面,由(1)可得所以平面.(3)由(2)可知平面平面,所以平面平面取中点,因为是等腰直角三角形,则,则,由面面垂直性质定理可得平面,所以在平面上的射影为,则直线和平面所成的角为..所以当最小时,最大.此时.17.(15分)解:(1)由频率分布直方图得:,解得,解得(2)按分层抽样二组内的学生抽取的学生分别为5人,15人设这一组的平均值,方差所以总体方差是,解得(3)以样本的频率估计概率,该问题是二项分布问题,由频率分布直方图可知内的概率是0.6由得解得所以当最大时,18.(17分)解:(1)由得,所以.因为,所以,或(i)当时,因为,所以化简得,所以,或①当时,(舍去);②当时,作于,易得,此时(ii)当时,类似可得:化简得:,所以,或者

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论