2024年第二季度生成式人工智能报告_第1页
2024年第二季度生成式人工智能报告_第2页
2024年第二季度生成式人工智能报告_第3页
2024年第二季度生成式人工智能报告_第4页
2024年第二季度生成式人工智能报告_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Nowdecidesnext:

GettingrealaboutGenerativeAI

Deloitte’sStateofGenerativeAIintheEnterpriseQuartertworeport

April2024

/us/state-of-generative-ai

Tableofcontents

+

Foreword

+

Introduction

+

Now:Keyfindings

1Valuecreation

2Scalingup

3Buildingtrust

4Evolvingtheworkforce

+

Next:Lookingahead

+

Authorship&Acknowledgments

+

AbouttheDeloitteAIInstitute

AbouttheDeloitteCenterforIntegratedResearch

AbouttheDeloitteCenterforTechnology,Media&Telecommunications

+

Methodology

2

Introduction

Foreword

WehavetraveledalongwaysincetheGenerativeAIspaceracekickedoffinNovember2022—andyet,weknowwearestillatthebeginningofthislongandexcitingtransformation.Everyday,we

talkwithclientsabouthowmuchthereistofocusoninthemoment,howexplosivethepaceofchangeis,andhowchallengingitcanbeamidtheexcitementtotakealonger-termview.

“Weareinthefirstinningofa

thousand-inninggameandthere’ssomuchtobefiguredout.”

-Chiefanalyticsofficerinfinancialservices

Weseeorganizationsstartingtoachievebenefitsandmovetowardanearfuturewherethis

earlystageofGenerativeAItoolsiswidelydispersedanddrivingnewvalue.Buttherearealsosomehardrealitiestodealwithasbusinessleaderslooktoscaleandrealizethepotentialofthispowerfultechnology.

TheStateofGenerativeAIintheEnterprise:GettingrealaboutGenerativeAIcapturesanewsnapshotofthistransformativetimefromtheperspectivesofnearly2,000businessandtechnologyleaders,allfromorganizationsthatareactivelydeployingandscalingGenerativeAItoday.Echoingour

3

manyclients,fromtheseexecutiveswehearthatwhileexcitementpersistsitmaybeatitspeakasleaderscomeupagainstculturalchallenges,questionsabouthowtomanagetheirworkforces,andissueswithtrustthat—atleastfornow—standinthewayofunlockingGenerativeAI’sfullvalue.

Alltold,itisexcitingthatGenerativeAI’spotentialisbeginningtoweaveitswaydeeperintothe

foundationsofhoworganizationsoperateandwecontinuetolearnmoreaboutemergingleadingpractices.Amidthosedevelopments,wealsocontinuetoseethatachievingvaluewithGenerativeAIconnectshandinhandwithkeepinghumansatthecenter.

Learnmoreabouttheseriesandsignupforupdatesat

/us/state-of-generative-ai

.

NitinMittal,CostiPerricos,KateSchmidt,BrennaSnidermanandDavidJarvis

Introduction

GettingrealaboutGenerativeAI

Istheinfatuationphaseover?QuartertwoofDeloitte’sglobalquarterlysurveyfoundmanyorganizations

beginningtogetdowntotheseriousworkofmakingGenerativeAI’svastpotentialareality.

Thisreportpresentsfindingsfromthesecondin

Deloitte’songoingseriesofquarterlyglobalsurveysonGenerativeAIintheenterprise.Togainadditionalcontextforourwavetworesearch,wealso

conductedaseriesofin-depthinterviewswithseniorexecutivesfromabroadrangeofindustries.

Ourresearchshowsthatorganizationsareincreasinglyprioritizingvaluecreationanddemandingtangible

resultsfromtheirGenerativeAIinitiatives.ThisrequiresthemtoscaleuptheirGenerativeAIdeployments—advancingbeyondexperimentation,pilotsandproofsofconcept.Transitioningtolarge-scaledeployments

willincreaseGenerativeAI’simpactonthebusiness

andexpanditsreachtoamuchlargersegmentoftheworkforce.Successfulscaling,inturn,presentsawiderangeofchallenges,encompassingeverythingfrom

strategy,processesandpeopletodataandtechnology.

Twoofthemostcriticalchallengesforscalingare

buildingtrust(intermsofmakingGenerativeAI

bothmoretrustedandtrustworthy)andevolving

theworkforce(addressingGenerativeAI’spotentiallymassiveimpactonworkerskills,rolesandheadcount).

Herewe’lltakeanin-depthlookatallfourofthese

areas—value,scaling,trustandworkforce—tohelp

organizationsmoveforwardmoreeffectivelyontheirGenerativeAIjourneys.Futuresurveyreportswill

focusselectivelyonotherkeychallengestosuccessfulGenerativeAIscalingandvaluecreation.

4

5

Introduction

GettingrealaboutGenerativeAI(cont’d)

Valuecreation

•Thepercentageoforganizationsreportingtheywerealreadyachievingtheirexpectedbenefitstoa“large”or“verylarge”extentis18%–36%,dependingonthetypeof

benefitbeingpursued.

•Organizationsthatreported“high”or“veryhigh”levelsofGenerativeAIexpertisearescalingGenerativeAImuchmoreaggressively—andareachievingtheirdesiredbenefitstoamuchgreaterdegreethanothers.

•OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovation(45%)andimprovingoperations(43%)—addressingthevalueequationfrombothsides.

Scalingup

•Leadersseescalingasessentialforcreatingvalue,increasingGenerativeAI’simpact

onthebusinessandexpandingthetechnology’suserbase.ThescalingphaseiswhenGenerativeAI’spotentialbenefitsareconvertedintoreal-worldvalue.It’salso,however,whenanorganization’spotentialconcernscanbecomereal-worldbarrierstosuccess.

•Commonareasofconcernincludedatasecurityandquality,explainabilityofGenerativeAIoutputs,andworkermistrustorlackoffamiliaritywithGenerativeAItools.

•WorkforceaccesstoapprovedGenerativeAItoolsandapplicationsremainsquitelow,withnearlyhalfofsurveyedorganizations(46%)reportingtheyprovidedapproved

GenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).However,mostworkerswithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithoutconsent.

AllstatisticsnotedinthisreportanditsgraphicsarederivedfromDeloitte’ssecondquarterlysurvey,conductedJanuary–February2024;TheStateofGenerativeAIintheEnterprise:Nowdecidesnext,areportseries.N(Total

leadersurveyresponses)=1,982.

GenerativeAIisanareaofartificialintelligenceandreferstoAIthatinresponsetoaquerycancreatetext,

images,videoandotherassets.GenerativeAIsystemscaninteractwithhumansandareoftenbuiltusinglargelanguagemodels(LLMs).Alsoreferredtoas“GenAI.”

Introduction

GettingrealaboutGenerativeAI(cont’d)

Buildingtrust

•Lackoftrustremainsamajorbarriertolarge-scale

GenerativeAIadoptionanddeployment.Twokey

aspectsoftrustweobservedare:(1)trustinthequalityandreliabilityofGenerativeAI’soutputand(2)trust

fromworkersthatthetechnologywillmaketheirjobseasierwithoutreplacingthem.

•TrustissueshavenotpreventedorganizationsfromrapidlyadoptingGenerativeAIforexperiments

andproofsofconcept,with60%reportingthey

areeffectivelybalancingrapidimplementationwithriskmanagement.Trustislikelytobecomeabiggerissue,however,asorganizationstransitiontolarge-scaledeployment.Manyreportedtheyarecurrentlyinvestingsignificanttimeandeffortintobuilding

guardrailsaroundGenerativeAI.

•Organizationsthatreported“high”or“veryhigh”levelsofexpertiserecognizetheimportanceofbuildingtrustinGenerativeAIacrossnumerousdimensions(e.g.,input/outputquality,transparency,workerempathy)andareimplementingprocessestoimproveittoamuchgreaterextentthanareotherorganizations.

Evolvingtheworkforce

•Mostorganizations(75%)expectthetechnologytoaffecttheirtalentstrategieswithintwoyears;32%oforganizationsthatreported“veryhigh”levelsofGenerativeAIexpertisearealreadymakingchanges.

•Themostexpectedtalentstrategyimpactsareprocessredesign(48%)andupskillingorreskilling(47%).

•GenerativeAIisexpectedtoincreasethevalueof

sometechnology-centeredskills(suchasdataanalysis)aswellashuman-centeredskills(suchascriticalthinking,creativityandflexibility),whiledecreasingthevalueofotherskills.

•Intheshortterm,moreorganizationssaidtheyexpectthetechnologytoincreaseheadcount(39%)thanto

decreaseheadcount(22%)—perhapsduetoincreasedneedsforGenerativeAIanddataexpertise.

AbouttheStateof

GenerativeAIintheEnterprise:Wavetwosurveyresults

Thewavetwosurveycoveredinthisreportwasfieldedto1,982director-toC-suite-levelrespondentsacross

sixindustriesandsixcountriesbetweenJanuary

andFebruary2024.Industriesincluded:Consumer;Energy,Resources&Industrials;FinancialServices;

LifeSciences&HealthCare;Technology,Media&

Telecom;andGovernment&PublicServices.Our

Q2surveyfindingsareaugmentedwithover20executiveinterviews.Thissecondreportispartofayearlong

seriesbytheDeloitteAIInstitutetohelpleaders

inbusiness,technologyandthepublicsectortrack

therapidpaceofGenerativeAIchangeandadoption.

TheseriesisbasedonDeloitte’sStateofAIintheEnterprisereports,whichhavebeenreleasedannuallythepastfiveyears.

Learnmoreat/us/state-of-generative-ai.

6

Now:Keyfindings

7

8

Now:Keyfindings

1Valuecreation

Proving,measuringandcommunicatingvalueiscrucial

toanorganization’sGenerativeAIjourney.Inoursurveyandinterviews,manyorganizationsreportedthey

wereincreasinglyemphasizingtheneedforGenerativeAIinitiativesandinvestmentstohaveclearvalue

objectivesanddelivertangibleresults,ratherthansimplybeingviewedasexperimentsorlearningexperiences.

AsoneexecutiveataFortune500manufacturingcompanynoted:“Wehaveaverystrictinternalrulethatifwedon’tseevaluefromourGenerativeAI

solutions,wewon’tdoitorwewon’tscaleit.”

Thatsaid,therearemanywaystodefineand

measurevalue—especiallyforatechnologywiththe

transformationalpotentialofGenerativeAI.Although

financialreturnoninvestment(ROI)isimportant,valuedriverssuchasinnovation,strategicpositioningand

competitivedifferentiationcanbeevenmoreimportant.

ValueobjectivesandprioritiesforGenerativeAIcan—

andshould—varybyorganization,industryandusecase.Wherethetechnology’spotentialimpactisstrategic

andtrulygame-changing,theneedandlatitudefor

experimentation,learningandinnovationaremuch

greater(withlessemphasisonimmediatepayback)thaninsituationswhereproductivityandcostsavingsaretheprimaryexpectedbenefits.

Moreover,GenerativeAIissonew—andadvancingsoquickly—thataccuratelyestimatingbenefitsismuch

harderthanforanestablishedtechnologywithaproventrackrecord.

“Anytechnologythat’salittleoverayearold,nobody’s

goingtohaveayear’sworthofdatatodoabackward-

lookingROI,”saidonetechcompanyexecutivewe

interviewed.“AndwiththefundamentalandfoundationalchangesGenerativeAIoffers,it’sveryhardtoevenofferaforward-looking[totalcostofoperating]orROIbecausethere’ssomanypossibilitiesofimpactandvariedways

tointegrateitintoyourbusiness.”

Therefore,manyforward-thinkingorganizationsareimplementingGenerativeAIwithoutspecificROItargetsastheyrealizetheycan’taffordtogetleftbehindinthiscriticalandfast-movingmarket.

Now:Keyfindings

GenerativeAI“experts”areachievingtheirdesiredbenefitstoamuchgreaterdegree.

Ineverycategory,organizationsthatratedthemselves

ashaving“high”or“veryhigh”levelsofGenerativeAI

expertisereportedmuchgreatersuccessatachievingtheirdesiredbenefits.Theiradvantagewasgreatestinstrategicandgrowth-relatedareassuchasimprovingproductsandservicesandencouraginginnovationandgrowth.

“large”or“verylarge”extentis18%–36%,dependingonthetypeofbenefitbeingpursued.

OrganizationsarestartingtodemandtangiblebusinessvaluefromGenerativeAI,andsomearebeginningtoachievereal-worldbenefits.

Asonepublicsectorexecutivetoldus,“Thebigselling

pointisifImakeaninvestmentanddosomethinglike

this,what’sthetangiblereturnandwhataresomeeasy

returns?Andthenwhataremorecomplicatedlonger-termreturnsthattakemoreinvestmentmoney?IfIcandosomeoftheeasieronesandbuildonthem,itcantranslateinto‘Ithinkthiswouldbeworthittoinvestalotmoremoney.’Ibelievealotofentitiesinoursectorareatthatpoint.”

TheorganizationswesurveyedexpectGenerativeAItodeliverabroadrangeofbenefits,withthemostcommonobjective—atleastintheshortterm—beingimproved

efficiencyandproductivity(56%),whichisconsistentwiththeresultsfromlastquarter’ssurvey.Thepercentageofrespondentswhosaidtheirorganizations’GenerativeAIinitiativeswerealreadyachievingexpectedbenefitstoa

Achievingbenefits

Ofthoseseekingthebenefit,thepercentageofrespondentsachievingthebenefittoalargeextentormore

Veryhighexpertise

Overall

63%

55%

54%

48%

48%

48%

40%

42%

36%

70%

22%

30

Detectfraud/managerisk

Shiftworkers fromlower-tohigher-leveltasks

28

%35

%27

%18

%36

%

%25

%29

%30%

Improveexisting

products

andservices

Increasespeed/ easeofdevnewsystems/software

Reducecosts

Uncovernewideasand insights

Increaserevenue

Encourageinnovationandgrowth

Improve

efficiencyandproductivity

Enhance

relationshipswithclients/customers

Figure1

Q:Whatareyouranticipatedbenefitsandtowhatextentareyouachievingthosebenefitstodate?(Jan./Feb.2024);N(Total)=1,982;N(veryhigh)=96

9

10

Now:Keyfindings

“Expert”organizationsarescalingGenerativeAImuchmoreaggressively.

GenerativeAIexpertorganizationsarelikelyhaving

moresuccessatcapturingbenefitsbecausetheyarescalingupmuchmoreaggressively,comparedtotheothercategories,whichprovidesalargerbasefor

generatingbenefits.

Accordingtooursurvey,organizationsreporting“very

high”levelsofGenerativeAIexpertisearedeployingAImuchmorerapidlyandextensivelythanothers.Infact,73%saidtheyareadoptingthetechnologyata“fast”

or“veryfast”pace(versusonly40%oforganizations

with“some”levelofexpertise).Theyarealsoscaling

GenerativeAIathigherratesacrossfunctionsandusingitmorewithinfunctions.Forexample,thosewith“very

high”expertisereported,onaverage,implementingatscalein1.4functions,outofeighttotalfunctions,whilethosewith“some”expertisearedoingsoinonly0.3functions.Further,38%ofthosewith“veryhigh”expertisereportedimplementingGenerativeAIatscaleinmarketing,salesandcustomerservice—

versusonly10%oforganizationswith“some”levelofexpertise.

Companiesthatreportexpertisearemovingquickly.

80%

73%

66%

64%

61%

62%

47%

48%

39%

40%

33%

34%

19%

Figure2

(Jan./Feb.2024)N(Total)=1,982;N(Veryhigh)=96;N(Some)=1,021

23%

Adoptingata

Providingmoreoftheir

Adoptingathigherlevels

Investingmorein

Investingmorein

Usingcode

Usingopen-source

fasterpace

workforceaccessto

acrossfunctions

hardware

cloudconsumption

generatorsmore

LLMsmore

AdoptingGenerativeAI

GenAI

ImplementingGenerative

Increasinghardware

Increasingcloud

CurrentlyusingGenerative

Currentlyusing

“fast”or“veryfast”

>40%ofworkforcehas

AIformarketing,sales

investmentbecauseof

investmentbecauseof

AIcodegenerator

opensourcelarge

accesstoGenerativeAItools/applications

andcustomerservice

GenerativeAIstrategy

GenerativeAIstrategy

languagemodels

Veryhighexpertise

Someexpertise

Now:Keyfindings

Insightsfromourexecutiveinterviewsaligncloselywithsurveyfindings,showingthatleadingorganizationsareaggressivelyscalinguptheirGenerativeAIeffortsbothhorizontally(acrossmultiplefunctionsordomains)

andvertically(withinasinglefunctionordomain).Thiscombinationofhorizontalandverticalscalingmayhelpachievevaluecreationmoreeffectively.

Asonechieftransformationofficerinmanufacturingnoted,“[Wehave]anapplicationthatisbeingincrediblysuccessful

andhassavedussignificantamountsofmoney…andthatwehavescaledverybroadlyacrossmanyofoursitesandcontinuetoscalefurtheracrossmoreequipmentacrossmoresites.”

Similarly,fromabroadmarketperspectiveweareseeinganincreasinglysharpdistinctionbetweenhorizontalusecasesthatcutacrossindustries(e.g.,officeproductivitysuitesandenterpriseresourceplanningsystemswith

integratedGenerativeAI)andverticalusecasesthat

areindustry-specificandnarrowlyfocusedbutmorestrategicallyimpactful(e.g.,GenerativeAItoolsforsemiconductordesignthatareusedonlybyasmallsubsetofworkersbuthaveaverylargeimpactonthebusiness).

11

Now:Keyfindings

OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovationandadditionaloperationsimprovements.

Amongtheoverallrespondentpool,organizationssaidtheyprimarilyplannedtoreinvestcost

andtimesavingsfromGenerativeAIintodriving

innovation(45%)andimprovingoperations(43%),

addressingthevalueequationfrombothsides.It’sinterestingtonotethatasignificantpercentage

oforganizations(27%)alsoplannedtoreinvestinscalingGenerativeAIadoption,creatingacycleofGenerativeAIreinvestmentandgrowth.

Organizationswith“veryhigh”GenerativeAI

expertiseareevenmorefocusedthanothersondrivinginnovation(51%).TheyarealsolessinclinedthanotherstoreinvestsavingsfromGenerativeAIintoimprovingoperationsandmoreinclinedtoprioritizedevelopingnewproductsandservices.

Therightreinvestmentapproachdependsonan

organization’sspecificneeds.Organizationscurrentlyfacingstrategicdisruptionortransformationfrom

GenerativeAIhaveagreaterimperativetofocuson

strategicobjectivessuchasinnovationandgrowth,andarelikelyalreadyworkingmoreaggressivelytodevelopstrongGenerativeAIcapabilities.

Bycontrast,organizationsinindustriesthatare

currentlynotbeingdisruptedbyGenerativeAIaremorelikelytofocusonbenefitssuchasindividual

workerproductivityandoperationsimprovement,areaswithlessofasenseofurgencyandless

toleranceforrisk.SuchorganizationscanstillbenefitgreatlyfromGenerativeAI—justinadifferentway.Theyalsohaveavaluableopportunitytowatch

andlearnfromtheexperiencesofotherindustriesthatarecurrentlybeingdisrupted—lessonsthatcouldservethemwellifandwhenGenerativeAIdisruptionreachestheirownindustry.

“ToenableGenAIvalueinourbusiness,weneedtochangeourmindsetanddevelopR&Dcapabilitiestorealizealong-termvisionenabledbyGenAI,”saidtheCEOofadigitalmediacompany.“Rightnow,[ourmindset]isshort-termandjustabouttangiblecashvalueforone-offusecases.”

Areastoreinvesttimeandcostsavings

Driving innovationopportunities

Developingnewproductsandservices

ScalingGenAIadoptionacrosstheorganization

Trainingand upskillingemployees

EnhancingITinfrastructure

Creatinga returnforshareholders

45%

43%

29%

28%

27%

28%

23%

20%

19%

16%

Improvingoperationsacrosstheorganization

Expandingourmarket

Improving

cybersecurityinfrastructure

Enhancingriskmanagementsystems

Exploringnew

businessmodels

Creatingnewjobs

Figure3

Q:Wheredoesyourcompanyplantoreinvestcostortimesavings

generatedthroughimplementationofGenAIcapabilities(selecttop3)?

(Jan./Feb.2024)N(Total)=1,982

12

13

2

Now:Keyfindings

Scalingup

Akeytovaluecreation,scalingincreasesGenerative

AI’simpactonthebusinessandexpandsitsuser

base—bothofwhichhaveastrongmultipliereffectonGenerativeAI’sbenefits.Yet,manyorganizationsfinditchallengingtomaketheleapfrompilotsandproofsofconcepttolarge-scaledeployment.

Scalingiscomplexandrequireseffortacrossavarietyofinterrelatedelementsspanningstrategy,process,people,dataandtechnology.AlthoughthechallengesassociatedwithscalingGenerativeAIarecommontomanydigital

transformationinitiatives,issuessuchasriskmanagementandgovernance,workforcetransformation,trustanddatamanagementtakeonevengreaterimportance.Whatworkedwellinthepastmightnotworkthesamewaywiththisnewtechnology.

Thescalingphaseiswhenpotentialbenefitsare

convertedintoreal-worldvalue.Itisalso,however,when

potentialissuesbecomereal-worldbarriers.AndwithGenerativeAI,manyofthosebarriersarestillbeingidentifiedandunderstood.

“Therearealwaysissuesthatemergethroughthe

adoptionandscalingtransitionthataren’texpected—

thequestionwehavetoconsiderishowhardaretheytoovercome,”saidachieftechnologyofficerweinterviewed.“Forexample,[oneofour]usecaseshadsometechnical,policyandcybersecurityissues,buttheywererelativelyeasytoovercome,sowescaled.Conversely,for[two

other]usecasesmoreissuesemergedlinkedtotheskillleveltoworkwiththeoutputsoftheAIsolution.These

havebeenhardertoaddress,soscalinghasbeenslower.”

Apublicsectorchiefinformationofficeroutlinedanotherapproach:“[Forus,successfulscalingis]buildingon

previoussuccessesandthentakingthoseinitiativestoanotherlevel.Expandingtootherareasofthe

organization,incorporatingmoredatasets,expandingtheuserbase(internalandexternal)toimproveuponexistingresults,andrefiningthecurrentsolutionformorevalue.

Thisphasedapproachgivesusasenseofassurancetheinvestmentisworthwhilebeforewecommitsignificantlymoreresources.”

Off-the-shelfGenerativeAIsolutionsforcommonuse

casessuchasofficeproductivityarearguablytheeasiesttodeployatscale,buttheystillrequiresubstantial

investment,effortandtraining.Foruniqueand/ormorestrategicGenerativeAIsolutionsandusecases,the

complexityandchallengesincreasebyleapsandbounds,alongwiththepotentialforgreaterreturns.

14

Now:Keyfindings

WorkforceaccesstoapprovedGenAItoolsandapplicationsremainslow.

Nearlyhalfofourrespondents(46%)reportedtheyprovidedapprovedGenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).Organizationsreporting“veryhigh”levelsofGenerativeAIexpertisearefurtheralong,withnearlyhalf(48%)

providingapprovedGenerativeAIaccesstoatleast40%oftheirworkforces.Evenforthese“expert”organizations,workeraccesstoapprovedtoolsremainstheexception,nottherule.

Ourexecutiveinterviewspointedtoanumberofreasonsforthisoveralllowpenetration

rate,mostlyrevolvingaroundriskversusreward—especiallydata-relatedrisks.Dothe

potentialrewardsofGenerativeAIjustifytherisks,andcantherisksbemitigated?In

particular,wefoundwidespreadconcernthatallowingworkerstousepubliclargelanguagemodels(LLMs)andGenerativeAItoolsmightleadtoproblemswithprotectionofintellectualpropertyandcustomerprivacy.

PercentageofworkforcewithaccesstoGenerativeAI

49%

46%

36%

29%28%27%

31%

16%16%14%

25%

23%24%

16%

w5%w3%1%3%4%

8%

6%7%

6%

2%

Upto20%20%–40%40%–60%60%–80%Morethan80%

Percentageoftheworkforce

Q:Howmuchofyouroverallworkforce,doyouestimate,haveaccesstoyourorganization’ssanctioned(approved)GenerativeAItools/applications?(Jan./Feb.2024)N(Total)=1,982,N(Veryhigh)=96,N(High)=606,N(Some)=1,021,N(Little)=257

76%

Overall

Littleexpertise

SomeexpertiseHighexpertise

Veryhighexpertise

Figure4

Now:Keyfindings

Otherconcernsthatcameupinourexecutiveinterviewsinclude:

•GenerativeAIoutputsthatcanbeunpredictableandsubjecttoinaccuracies(i.e.,“hallucinations”)—whichunderminetrust,particularlywhencombinedwithlackoftransparencyandexplainability

•PotentiallossofcontroloverwhatGenerativeAIappsarebeingusedwithintheorganizationandwhoisusingthem

•WorkerresistancetousingGenerativeAIduetolackoffamiliarityorconcernsaboutbeingreplaced

Giventhepotentialchallengesandrisks,acautious

approachtoallowingworkerstouseGenerativeAItoolsarguablymakessense.However,tightrestrictionson

GenerativeAIarebestviewedasatemporarystopgapmeasure—notaviablelong-termsolution.Logically,

anyworkerwithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithouttheiremployer’sconsent—potentiallyleaking

sensitivedataandintellectualpropertyintopublicLLMsinanentirelyuncontrolledway.Thisstatusislikelyto

continueintheabsenceofpracticalpoliciesforallowingandmanagingwidespreadGenerativeAIaccess.

Organizationsshouldbeactivelydevelopingsustainableprocessesandpoliciesforenablingubiquitousbut

responsibleGenerativeAIuseandmanagingthe

associatedrisksatscale.Widespreadbutcontrolled

accesstoGenerativeAIwillhelppeoplegetmore

comfortablewiththetechnologyandenablethemtounderstandwhatitcanandcannotdo—givingthemamorerealisticandinformedperspectivewhileopeningthedoortonewopportunitiesforGenerativeAIvaluecreationacrosstheenterprise.

15

“Ithasbeensurprisingtoseehowlowthebaristodosomething

quickanddirty—thisisboth

excitingandscary,butthebig

challengeistoscale—thisisa

wholenewballgame…butscalingishardwithoutcentralization.”

-DirectorofdatascienceandAIinthetechnologyindustry

16

3

Now:Keyfindings

Buildingtrust

Lackoftrustcontinuestobeoneofthebiggestbarrierstolarge-scaleadoptionanddeploymentofGenerativeAI.Inthiscontext,twokeyaspectsoftrustare:(1)trustinthequalityandreliabilityofGenerativeAI’soutput(supportedbyimprovedtransparencyandexplainability),and(2)trustfromworkersthatGenerativeAIwillmaketheirjobseasierandwon’treplacethem.

Regardingworkertrust,oneexecutiveweinterviewed

notedthat“oncepeoplestartseeingefficienciesand

thebenefitsthetoolshavetotheirwork,thatwilldriveadoptionandsustainedsuccess.”Inotherwords,greaterexposuretoGenerativeAItoolswillhelppeoplebecomemorecomfortablewiththetechnologyandunderstandhowitcanhelpthemdo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论