版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Nowdecidesnext:
GettingrealaboutGenerativeAI
Deloitte’sStateofGenerativeAIintheEnterpriseQuartertworeport
April2024
/us/state-of-generative-ai
Tableofcontents
+
Foreword
+
Introduction
+
Now:Keyfindings
1Valuecreation
2Scalingup
3Buildingtrust
4Evolvingtheworkforce
+
Next:Lookingahead
+
Authorship&Acknowledgments
+
AbouttheDeloitteAIInstitute
AbouttheDeloitteCenterforIntegratedResearch
AbouttheDeloitteCenterforTechnology,Media&Telecommunications
+
Methodology
2
Introduction
Foreword
WehavetraveledalongwaysincetheGenerativeAIspaceracekickedoffinNovember2022—andyet,weknowwearestillatthebeginningofthislongandexcitingtransformation.Everyday,we
talkwithclientsabouthowmuchthereistofocusoninthemoment,howexplosivethepaceofchangeis,andhowchallengingitcanbeamidtheexcitementtotakealonger-termview.
“Weareinthefirstinningofa
thousand-inninggameandthere’ssomuchtobefiguredout.”
-Chiefanalyticsofficerinfinancialservices
Weseeorganizationsstartingtoachievebenefitsandmovetowardanearfuturewherethis
earlystageofGenerativeAItoolsiswidelydispersedanddrivingnewvalue.Buttherearealsosomehardrealitiestodealwithasbusinessleaderslooktoscaleandrealizethepotentialofthispowerfultechnology.
TheStateofGenerativeAIintheEnterprise:GettingrealaboutGenerativeAIcapturesanewsnapshotofthistransformativetimefromtheperspectivesofnearly2,000businessandtechnologyleaders,allfromorganizationsthatareactivelydeployingandscalingGenerativeAItoday.Echoingour
3
manyclients,fromtheseexecutiveswehearthatwhileexcitementpersistsitmaybeatitspeakasleaderscomeupagainstculturalchallenges,questionsabouthowtomanagetheirworkforces,andissueswithtrustthat—atleastfornow—standinthewayofunlockingGenerativeAI’sfullvalue.
Alltold,itisexcitingthatGenerativeAI’spotentialisbeginningtoweaveitswaydeeperintothe
foundationsofhoworganizationsoperateandwecontinuetolearnmoreaboutemergingleadingpractices.Amidthosedevelopments,wealsocontinuetoseethatachievingvaluewithGenerativeAIconnectshandinhandwithkeepinghumansatthecenter.
Learnmoreabouttheseriesandsignupforupdatesat
/us/state-of-generative-ai
.
NitinMittal,CostiPerricos,KateSchmidt,BrennaSnidermanandDavidJarvis
Introduction
GettingrealaboutGenerativeAI
Istheinfatuationphaseover?QuartertwoofDeloitte’sglobalquarterlysurveyfoundmanyorganizations
beginningtogetdowntotheseriousworkofmakingGenerativeAI’svastpotentialareality.
Thisreportpresentsfindingsfromthesecondin
Deloitte’songoingseriesofquarterlyglobalsurveysonGenerativeAIintheenterprise.Togainadditionalcontextforourwavetworesearch,wealso
conductedaseriesofin-depthinterviewswithseniorexecutivesfromabroadrangeofindustries.
Ourresearchshowsthatorganizationsareincreasinglyprioritizingvaluecreationanddemandingtangible
resultsfromtheirGenerativeAIinitiatives.ThisrequiresthemtoscaleuptheirGenerativeAIdeployments—advancingbeyondexperimentation,pilotsandproofsofconcept.Transitioningtolarge-scaledeployments
willincreaseGenerativeAI’simpactonthebusiness
andexpanditsreachtoamuchlargersegmentoftheworkforce.Successfulscaling,inturn,presentsawiderangeofchallenges,encompassingeverythingfrom
strategy,processesandpeopletodataandtechnology.
Twoofthemostcriticalchallengesforscalingare
buildingtrust(intermsofmakingGenerativeAI
bothmoretrustedandtrustworthy)andevolving
theworkforce(addressingGenerativeAI’spotentiallymassiveimpactonworkerskills,rolesandheadcount).
Herewe’lltakeanin-depthlookatallfourofthese
areas—value,scaling,trustandworkforce—tohelp
organizationsmoveforwardmoreeffectivelyontheirGenerativeAIjourneys.Futuresurveyreportswill
focusselectivelyonotherkeychallengestosuccessfulGenerativeAIscalingandvaluecreation.
4
5
Introduction
GettingrealaboutGenerativeAI(cont’d)
Valuecreation
•Thepercentageoforganizationsreportingtheywerealreadyachievingtheirexpectedbenefitstoa“large”or“verylarge”extentis18%–36%,dependingonthetypeof
benefitbeingpursued.
•Organizationsthatreported“high”or“veryhigh”levelsofGenerativeAIexpertisearescalingGenerativeAImuchmoreaggressively—andareachievingtheirdesiredbenefitstoamuchgreaterdegreethanothers.
•OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovation(45%)andimprovingoperations(43%)—addressingthevalueequationfrombothsides.
Scalingup
•Leadersseescalingasessentialforcreatingvalue,increasingGenerativeAI’simpact
onthebusinessandexpandingthetechnology’suserbase.ThescalingphaseiswhenGenerativeAI’spotentialbenefitsareconvertedintoreal-worldvalue.It’salso,however,whenanorganization’spotentialconcernscanbecomereal-worldbarrierstosuccess.
•Commonareasofconcernincludedatasecurityandquality,explainabilityofGenerativeAIoutputs,andworkermistrustorlackoffamiliaritywithGenerativeAItools.
•WorkforceaccesstoapprovedGenerativeAItoolsandapplicationsremainsquitelow,withnearlyhalfofsurveyedorganizations(46%)reportingtheyprovidedapproved
GenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).However,mostworkerswithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithoutconsent.
AllstatisticsnotedinthisreportanditsgraphicsarederivedfromDeloitte’ssecondquarterlysurvey,conductedJanuary–February2024;TheStateofGenerativeAIintheEnterprise:Nowdecidesnext,areportseries.N(Total
leadersurveyresponses)=1,982.
GenerativeAIisanareaofartificialintelligenceandreferstoAIthatinresponsetoaquerycancreatetext,
images,videoandotherassets.GenerativeAIsystemscaninteractwithhumansandareoftenbuiltusinglargelanguagemodels(LLMs).Alsoreferredtoas“GenAI.”
Introduction
GettingrealaboutGenerativeAI(cont’d)
Buildingtrust
•Lackoftrustremainsamajorbarriertolarge-scale
GenerativeAIadoptionanddeployment.Twokey
aspectsoftrustweobservedare:(1)trustinthequalityandreliabilityofGenerativeAI’soutputand(2)trust
fromworkersthatthetechnologywillmaketheirjobseasierwithoutreplacingthem.
•TrustissueshavenotpreventedorganizationsfromrapidlyadoptingGenerativeAIforexperiments
andproofsofconcept,with60%reportingthey
areeffectivelybalancingrapidimplementationwithriskmanagement.Trustislikelytobecomeabiggerissue,however,asorganizationstransitiontolarge-scaledeployment.Manyreportedtheyarecurrentlyinvestingsignificanttimeandeffortintobuilding
guardrailsaroundGenerativeAI.
•Organizationsthatreported“high”or“veryhigh”levelsofexpertiserecognizetheimportanceofbuildingtrustinGenerativeAIacrossnumerousdimensions(e.g.,input/outputquality,transparency,workerempathy)andareimplementingprocessestoimproveittoamuchgreaterextentthanareotherorganizations.
Evolvingtheworkforce
•Mostorganizations(75%)expectthetechnologytoaffecttheirtalentstrategieswithintwoyears;32%oforganizationsthatreported“veryhigh”levelsofGenerativeAIexpertisearealreadymakingchanges.
•Themostexpectedtalentstrategyimpactsareprocessredesign(48%)andupskillingorreskilling(47%).
•GenerativeAIisexpectedtoincreasethevalueof
sometechnology-centeredskills(suchasdataanalysis)aswellashuman-centeredskills(suchascriticalthinking,creativityandflexibility),whiledecreasingthevalueofotherskills.
•Intheshortterm,moreorganizationssaidtheyexpectthetechnologytoincreaseheadcount(39%)thanto
decreaseheadcount(22%)—perhapsduetoincreasedneedsforGenerativeAIanddataexpertise.
AbouttheStateof
GenerativeAIintheEnterprise:Wavetwosurveyresults
Thewavetwosurveycoveredinthisreportwasfieldedto1,982director-toC-suite-levelrespondentsacross
sixindustriesandsixcountriesbetweenJanuary
andFebruary2024.Industriesincluded:Consumer;Energy,Resources&Industrials;FinancialServices;
LifeSciences&HealthCare;Technology,Media&
Telecom;andGovernment&PublicServices.Our
Q2surveyfindingsareaugmentedwithover20executiveinterviews.Thissecondreportispartofayearlong
seriesbytheDeloitteAIInstitutetohelpleaders
inbusiness,technologyandthepublicsectortrack
therapidpaceofGenerativeAIchangeandadoption.
TheseriesisbasedonDeloitte’sStateofAIintheEnterprisereports,whichhavebeenreleasedannuallythepastfiveyears.
Learnmoreat/us/state-of-generative-ai.
6
Now:Keyfindings
7
8
Now:Keyfindings
1Valuecreation
Proving,measuringandcommunicatingvalueiscrucial
toanorganization’sGenerativeAIjourney.Inoursurveyandinterviews,manyorganizationsreportedthey
wereincreasinglyemphasizingtheneedforGenerativeAIinitiativesandinvestmentstohaveclearvalue
objectivesanddelivertangibleresults,ratherthansimplybeingviewedasexperimentsorlearningexperiences.
AsoneexecutiveataFortune500manufacturingcompanynoted:“Wehaveaverystrictinternalrulethatifwedon’tseevaluefromourGenerativeAI
solutions,wewon’tdoitorwewon’tscaleit.”
Thatsaid,therearemanywaystodefineand
measurevalue—especiallyforatechnologywiththe
transformationalpotentialofGenerativeAI.Although
financialreturnoninvestment(ROI)isimportant,valuedriverssuchasinnovation,strategicpositioningand
competitivedifferentiationcanbeevenmoreimportant.
ValueobjectivesandprioritiesforGenerativeAIcan—
andshould—varybyorganization,industryandusecase.Wherethetechnology’spotentialimpactisstrategic
andtrulygame-changing,theneedandlatitudefor
experimentation,learningandinnovationaremuch
greater(withlessemphasisonimmediatepayback)thaninsituationswhereproductivityandcostsavingsaretheprimaryexpectedbenefits.
Moreover,GenerativeAIissonew—andadvancingsoquickly—thataccuratelyestimatingbenefitsismuch
harderthanforanestablishedtechnologywithaproventrackrecord.
“Anytechnologythat’salittleoverayearold,nobody’s
goingtohaveayear’sworthofdatatodoabackward-
lookingROI,”saidonetechcompanyexecutivewe
interviewed.“AndwiththefundamentalandfoundationalchangesGenerativeAIoffers,it’sveryhardtoevenofferaforward-looking[totalcostofoperating]orROIbecausethere’ssomanypossibilitiesofimpactandvariedways
tointegrateitintoyourbusiness.”
Therefore,manyforward-thinkingorganizationsareimplementingGenerativeAIwithoutspecificROItargetsastheyrealizetheycan’taffordtogetleftbehindinthiscriticalandfast-movingmarket.
Now:Keyfindings
GenerativeAI“experts”areachievingtheirdesiredbenefitstoamuchgreaterdegree.
Ineverycategory,organizationsthatratedthemselves
ashaving“high”or“veryhigh”levelsofGenerativeAI
expertisereportedmuchgreatersuccessatachievingtheirdesiredbenefits.Theiradvantagewasgreatestinstrategicandgrowth-relatedareassuchasimprovingproductsandservicesandencouraginginnovationandgrowth.
“large”or“verylarge”extentis18%–36%,dependingonthetypeofbenefitbeingpursued.
OrganizationsarestartingtodemandtangiblebusinessvaluefromGenerativeAI,andsomearebeginningtoachievereal-worldbenefits.
Asonepublicsectorexecutivetoldus,“Thebigselling
pointisifImakeaninvestmentanddosomethinglike
this,what’sthetangiblereturnandwhataresomeeasy
returns?Andthenwhataremorecomplicatedlonger-termreturnsthattakemoreinvestmentmoney?IfIcandosomeoftheeasieronesandbuildonthem,itcantranslateinto‘Ithinkthiswouldbeworthittoinvestalotmoremoney.’Ibelievealotofentitiesinoursectorareatthatpoint.”
TheorganizationswesurveyedexpectGenerativeAItodeliverabroadrangeofbenefits,withthemostcommonobjective—atleastintheshortterm—beingimproved
efficiencyandproductivity(56%),whichisconsistentwiththeresultsfromlastquarter’ssurvey.Thepercentageofrespondentswhosaidtheirorganizations’GenerativeAIinitiativeswerealreadyachievingexpectedbenefitstoa
Achievingbenefits
Ofthoseseekingthebenefit,thepercentageofrespondentsachievingthebenefittoalargeextentormore
Veryhighexpertise
Overall
63%
55%
54%
48%
48%
48%
40%
42%
36%
70%
22%
30
Detectfraud/managerisk
Shiftworkers fromlower-tohigher-leveltasks
28
%35
%27
%18
%36
%
%25
%29
%30%
Improveexisting
products
andservices
Increasespeed/ easeofdevnewsystems/software
Reducecosts
Uncovernewideasand insights
Increaserevenue
Encourageinnovationandgrowth
Improve
efficiencyandproductivity
Enhance
relationshipswithclients/customers
Figure1
Q:Whatareyouranticipatedbenefitsandtowhatextentareyouachievingthosebenefitstodate?(Jan./Feb.2024);N(Total)=1,982;N(veryhigh)=96
9
10
Now:Keyfindings
“Expert”organizationsarescalingGenerativeAImuchmoreaggressively.
GenerativeAIexpertorganizationsarelikelyhaving
moresuccessatcapturingbenefitsbecausetheyarescalingupmuchmoreaggressively,comparedtotheothercategories,whichprovidesalargerbasefor
generatingbenefits.
Accordingtooursurvey,organizationsreporting“very
high”levelsofGenerativeAIexpertisearedeployingAImuchmorerapidlyandextensivelythanothers.Infact,73%saidtheyareadoptingthetechnologyata“fast”
or“veryfast”pace(versusonly40%oforganizations
with“some”levelofexpertise).Theyarealsoscaling
GenerativeAIathigherratesacrossfunctionsandusingitmorewithinfunctions.Forexample,thosewith“very
high”expertisereported,onaverage,implementingatscalein1.4functions,outofeighttotalfunctions,whilethosewith“some”expertisearedoingsoinonly0.3functions.Further,38%ofthosewith“veryhigh”expertisereportedimplementingGenerativeAIatscaleinmarketing,salesandcustomerservice—
versusonly10%oforganizationswith“some”levelofexpertise.
Companiesthatreportexpertisearemovingquickly.
80%
73%
66%
64%
61%
62%
47%
48%
39%
40%
33%
34%
19%
Figure2
(Jan./Feb.2024)N(Total)=1,982;N(Veryhigh)=96;N(Some)=1,021
23%
Adoptingata
Providingmoreoftheir
Adoptingathigherlevels
Investingmorein
Investingmorein
Usingcode
Usingopen-source
fasterpace
workforceaccessto
acrossfunctions
hardware
cloudconsumption
generatorsmore
LLMsmore
AdoptingGenerativeAI
GenAI
ImplementingGenerative
Increasinghardware
Increasingcloud
CurrentlyusingGenerative
Currentlyusing
“fast”or“veryfast”
>40%ofworkforcehas
AIformarketing,sales
investmentbecauseof
investmentbecauseof
AIcodegenerator
opensourcelarge
accesstoGenerativeAItools/applications
andcustomerservice
GenerativeAIstrategy
GenerativeAIstrategy
languagemodels
Veryhighexpertise
Someexpertise
Now:Keyfindings
Insightsfromourexecutiveinterviewsaligncloselywithsurveyfindings,showingthatleadingorganizationsareaggressivelyscalinguptheirGenerativeAIeffortsbothhorizontally(acrossmultiplefunctionsordomains)
andvertically(withinasinglefunctionordomain).Thiscombinationofhorizontalandverticalscalingmayhelpachievevaluecreationmoreeffectively.
Asonechieftransformationofficerinmanufacturingnoted,“[Wehave]anapplicationthatisbeingincrediblysuccessful
andhassavedussignificantamountsofmoney…andthatwehavescaledverybroadlyacrossmanyofoursitesandcontinuetoscalefurtheracrossmoreequipmentacrossmoresites.”
Similarly,fromabroadmarketperspectiveweareseeinganincreasinglysharpdistinctionbetweenhorizontalusecasesthatcutacrossindustries(e.g.,officeproductivitysuitesandenterpriseresourceplanningsystemswith
integratedGenerativeAI)andverticalusecasesthat
areindustry-specificandnarrowlyfocusedbutmorestrategicallyimpactful(e.g.,GenerativeAItoolsforsemiconductordesignthatareusedonlybyasmallsubsetofworkersbuthaveaverylargeimpactonthebusiness).
11
Now:Keyfindings
OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovationandadditionaloperationsimprovements.
Amongtheoverallrespondentpool,organizationssaidtheyprimarilyplannedtoreinvestcost
andtimesavingsfromGenerativeAIintodriving
innovation(45%)andimprovingoperations(43%),
addressingthevalueequationfrombothsides.It’sinterestingtonotethatasignificantpercentage
oforganizations(27%)alsoplannedtoreinvestinscalingGenerativeAIadoption,creatingacycleofGenerativeAIreinvestmentandgrowth.
Organizationswith“veryhigh”GenerativeAI
expertiseareevenmorefocusedthanothersondrivinginnovation(51%).TheyarealsolessinclinedthanotherstoreinvestsavingsfromGenerativeAIintoimprovingoperationsandmoreinclinedtoprioritizedevelopingnewproductsandservices.
Therightreinvestmentapproachdependsonan
organization’sspecificneeds.Organizationscurrentlyfacingstrategicdisruptionortransformationfrom
GenerativeAIhaveagreaterimperativetofocuson
strategicobjectivessuchasinnovationandgrowth,andarelikelyalreadyworkingmoreaggressivelytodevelopstrongGenerativeAIcapabilities.
Bycontrast,organizationsinindustriesthatare
currentlynotbeingdisruptedbyGenerativeAIaremorelikelytofocusonbenefitssuchasindividual
workerproductivityandoperationsimprovement,areaswithlessofasenseofurgencyandless
toleranceforrisk.SuchorganizationscanstillbenefitgreatlyfromGenerativeAI—justinadifferentway.Theyalsohaveavaluableopportunitytowatch
andlearnfromtheexperiencesofotherindustriesthatarecurrentlybeingdisrupted—lessonsthatcouldservethemwellifandwhenGenerativeAIdisruptionreachestheirownindustry.
“ToenableGenAIvalueinourbusiness,weneedtochangeourmindsetanddevelopR&Dcapabilitiestorealizealong-termvisionenabledbyGenAI,”saidtheCEOofadigitalmediacompany.“Rightnow,[ourmindset]isshort-termandjustabouttangiblecashvalueforone-offusecases.”
Areastoreinvesttimeandcostsavings
Driving innovationopportunities
Developingnewproductsandservices
ScalingGenAIadoptionacrosstheorganization
Trainingand upskillingemployees
EnhancingITinfrastructure
Creatinga returnforshareholders
45%
43%
29%
28%
27%
28%
23%
20%
19%
16%
Improvingoperationsacrosstheorganization
Expandingourmarket
Improving
cybersecurityinfrastructure
Enhancingriskmanagementsystems
Exploringnew
businessmodels
Creatingnewjobs
Figure3
Q:Wheredoesyourcompanyplantoreinvestcostortimesavings
generatedthroughimplementationofGenAIcapabilities(selecttop3)?
(Jan./Feb.2024)N(Total)=1,982
12
13
2
Now:Keyfindings
Scalingup
Akeytovaluecreation,scalingincreasesGenerative
AI’simpactonthebusinessandexpandsitsuser
base—bothofwhichhaveastrongmultipliereffectonGenerativeAI’sbenefits.Yet,manyorganizationsfinditchallengingtomaketheleapfrompilotsandproofsofconcepttolarge-scaledeployment.
Scalingiscomplexandrequireseffortacrossavarietyofinterrelatedelementsspanningstrategy,process,people,dataandtechnology.AlthoughthechallengesassociatedwithscalingGenerativeAIarecommontomanydigital
transformationinitiatives,issuessuchasriskmanagementandgovernance,workforcetransformation,trustanddatamanagementtakeonevengreaterimportance.Whatworkedwellinthepastmightnotworkthesamewaywiththisnewtechnology.
Thescalingphaseiswhenpotentialbenefitsare
convertedintoreal-worldvalue.Itisalso,however,when
potentialissuesbecomereal-worldbarriers.AndwithGenerativeAI,manyofthosebarriersarestillbeingidentifiedandunderstood.
“Therearealwaysissuesthatemergethroughthe
adoptionandscalingtransitionthataren’texpected—
thequestionwehavetoconsiderishowhardaretheytoovercome,”saidachieftechnologyofficerweinterviewed.“Forexample,[oneofour]usecaseshadsometechnical,policyandcybersecurityissues,buttheywererelativelyeasytoovercome,sowescaled.Conversely,for[two
other]usecasesmoreissuesemergedlinkedtotheskillleveltoworkwiththeoutputsoftheAIsolution.These
havebeenhardertoaddress,soscalinghasbeenslower.”
Apublicsectorchiefinformationofficeroutlinedanotherapproach:“[Forus,successfulscalingis]buildingon
previoussuccessesandthentakingthoseinitiativestoanotherlevel.Expandingtootherareasofthe
organization,incorporatingmoredatasets,expandingtheuserbase(internalandexternal)toimproveuponexistingresults,andrefiningthecurrentsolutionformorevalue.
Thisphasedapproachgivesusasenseofassurancetheinvestmentisworthwhilebeforewecommitsignificantlymoreresources.”
Off-the-shelfGenerativeAIsolutionsforcommonuse
casessuchasofficeproductivityarearguablytheeasiesttodeployatscale,buttheystillrequiresubstantial
investment,effortandtraining.Foruniqueand/ormorestrategicGenerativeAIsolutionsandusecases,the
complexityandchallengesincreasebyleapsandbounds,alongwiththepotentialforgreaterreturns.
14
Now:Keyfindings
WorkforceaccesstoapprovedGenAItoolsandapplicationsremainslow.
Nearlyhalfofourrespondents(46%)reportedtheyprovidedapprovedGenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).Organizationsreporting“veryhigh”levelsofGenerativeAIexpertisearefurtheralong,withnearlyhalf(48%)
providingapprovedGenerativeAIaccesstoatleast40%oftheirworkforces.Evenforthese“expert”organizations,workeraccesstoapprovedtoolsremainstheexception,nottherule.
Ourexecutiveinterviewspointedtoanumberofreasonsforthisoveralllowpenetration
rate,mostlyrevolvingaroundriskversusreward—especiallydata-relatedrisks.Dothe
potentialrewardsofGenerativeAIjustifytherisks,andcantherisksbemitigated?In
particular,wefoundwidespreadconcernthatallowingworkerstousepubliclargelanguagemodels(LLMs)andGenerativeAItoolsmightleadtoproblemswithprotectionofintellectualpropertyandcustomerprivacy.
PercentageofworkforcewithaccesstoGenerativeAI
49%
46%
36%
29%28%27%
31%
16%16%14%
25%
23%24%
16%
w5%w3%1%3%4%
8%
6%7%
6%
2%
Upto20%20%–40%40%–60%60%–80%Morethan80%
Percentageoftheworkforce
Q:Howmuchofyouroverallworkforce,doyouestimate,haveaccesstoyourorganization’ssanctioned(approved)GenerativeAItools/applications?(Jan./Feb.2024)N(Total)=1,982,N(Veryhigh)=96,N(High)=606,N(Some)=1,021,N(Little)=257
76%
Overall
Littleexpertise
SomeexpertiseHighexpertise
Veryhighexpertise
Figure4
Now:Keyfindings
Otherconcernsthatcameupinourexecutiveinterviewsinclude:
•GenerativeAIoutputsthatcanbeunpredictableandsubjecttoinaccuracies(i.e.,“hallucinations”)—whichunderminetrust,particularlywhencombinedwithlackoftransparencyandexplainability
•PotentiallossofcontroloverwhatGenerativeAIappsarebeingusedwithintheorganizationandwhoisusingthem
•WorkerresistancetousingGenerativeAIduetolackoffamiliarityorconcernsaboutbeingreplaced
Giventhepotentialchallengesandrisks,acautious
approachtoallowingworkerstouseGenerativeAItoolsarguablymakessense.However,tightrestrictionson
GenerativeAIarebestviewedasatemporarystopgapmeasure—notaviablelong-termsolution.Logically,
anyworkerwithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithouttheiremployer’sconsent—potentiallyleaking
sensitivedataandintellectualpropertyintopublicLLMsinanentirelyuncontrolledway.Thisstatusislikelyto
continueintheabsenceofpracticalpoliciesforallowingandmanagingwidespreadGenerativeAIaccess.
Organizationsshouldbeactivelydevelopingsustainableprocessesandpoliciesforenablingubiquitousbut
responsibleGenerativeAIuseandmanagingthe
associatedrisksatscale.Widespreadbutcontrolled
accesstoGenerativeAIwillhelppeoplegetmore
comfortablewiththetechnologyandenablethemtounderstandwhatitcanandcannotdo—givingthemamorerealisticandinformedperspectivewhileopeningthedoortonewopportunitiesforGenerativeAIvaluecreationacrosstheenterprise.
15
“Ithasbeensurprisingtoseehowlowthebaristodosomething
quickanddirty—thisisboth
excitingandscary,butthebig
challengeistoscale—thisisa
wholenewballgame…butscalingishardwithoutcentralization.”
-DirectorofdatascienceandAIinthetechnologyindustry
16
3
Now:Keyfindings
Buildingtrust
Lackoftrustcontinuestobeoneofthebiggestbarrierstolarge-scaleadoptionanddeploymentofGenerativeAI.Inthiscontext,twokeyaspectsoftrustare:(1)trustinthequalityandreliabilityofGenerativeAI’soutput(supportedbyimprovedtransparencyandexplainability),and(2)trustfromworkersthatGenerativeAIwillmaketheirjobseasierandwon’treplacethem.
Regardingworkertrust,oneexecutiveweinterviewed
notedthat“oncepeoplestartseeingefficienciesand
thebenefitsthetoolshavetotheirwork,thatwilldriveadoptionandsustainedsuccess.”Inotherwords,greaterexposuretoGenerativeAItoolswillhelppeoplebecomemorecomfortablewiththetechnologyandunderstandhowitcanhelpthemdo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁中医药大学《C程序设计及医学应用》2023-2024学年第一学期期末试卷
- 兰州理工大学《医学实验基本技术与设备》2023-2024学年第一学期期末试卷
- 集美大学《口腔人文医学》2023-2024学年第一学期期末试卷
- 湖南文理学院芙蓉学院《社会保障发展前沿》2023-2024学年第一学期期末试卷
- 湖南高速铁路职业技术学院《世界建筑装饰风格与流派》2023-2024学年第一学期期末试卷
- 重庆邮电大学《计算机学科课程教学论》2023-2024学年第一学期期末试卷
- 重庆健康职业学院《工程造价及管理》2023-2024学年第一学期期末试卷
- 中原工学院《软件质量保证与测试实验》2023-2024学年第一学期期末试卷
- 浙江农林大学暨阳学院《野生动植物保护与管理》2023-2024学年第一学期期末试卷
- 中国石油大学(华东)《表演基础元素训练》2023-2024学年第一学期期末试卷
- 建设项目施工现场春节放假期间的安全管理方案
- GB/T 19867.5-2008电阻焊焊接工艺规程
- 2023年市场部主管年终工作总结及明年工作计划
- 国有资产出租出借审批表(学校事业单位台账记录表)
- 30第七章-农村社会治理课件
- 考研考博-英语-东北石油大学考试押题三合一+答案详解1
- 出国学生英文成绩单模板
- 植物细胞中氨基酸转运蛋白的一些已知或未知的功能
- 山东省高等学校精品课程
- 三菱张力控制器LE-40MTA-E说明书
- 生活垃圾填埋场污染控制标准
评论
0/150
提交评论