2024年高中数学专题6-9重难点题型培优精讲平面向量的应用学生版新人教A版必修第二册_第1页
2024年高中数学专题6-9重难点题型培优精讲平面向量的应用学生版新人教A版必修第二册_第2页
2024年高中数学专题6-9重难点题型培优精讲平面向量的应用学生版新人教A版必修第二册_第3页
2024年高中数学专题6-9重难点题型培优精讲平面向量的应用学生版新人教A版必修第二册_第4页
2024年高中数学专题6-9重难点题型培优精讲平面向量的应用学生版新人教A版必修第二册_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题6.9平面对量的应用1.平面几何中的向量方法(1)用向量探讨平面几何问题的思想向量集数与形于一身,既有代数的抽象性又有几何的直观性.因此,用向量解决平面几何问题,就是将几何的证明问题转化为向量的运算问题,将“证”转化为“算”,思路清晰,便于操作.(2)向量在平面几何中常见的应用①证明线段平行或点共线问题,以及相像问题,常用向量共线定理:∥=-=0(≠0).

②证明线段垂直问题,如证明四边形是矩形、正方形,推断两直线(或线段)是否垂直等,常用向量垂直的条件:=0+=0.

③求夹角问题,利用夹角公式:==.

④求线段的长度或说明线段相等,可以用向量的模:||=或|AB|=||=.(3)向量法解决平面几何问题的“三步曲”2.向量在物理中的应用(1)力学问题的向量处理方法向量是既有大小又有方向的量,它们可以有共同的作用点,也可以没有共同的作用点,但力却是既有大小,又有方向且作用于同一作用点的量.用向量学问解决力的问题,往往是把向量平移到同一作用点上.(2)速度、位移问题的向量处理方法速度、加速度与位移的合成和分解,实质就是向量的加减法运算,而运动的叠加也用到向量的合成.(3)向量与功、动量

物理上力做功的实质是力在物体前进方向上的分力与物体位移的乘积,它的实质是向量的数量积.

①力的做功涉及两个向量及这两个向量的夹角,即W=||||.功是一个实数,它可正,可负,也可为零.

②动量涉及物体的质量m,物体运动的速度,因此动量的计算是向量的数乘运算.【题型1用向量解决平面几何中的平行问题】【方法点拨】用向量法解决平面几何中的平行问题,一般来说有两种方法.(1)一般向量法:利用向量的运算法则、运算律或性质计算,将平行问题进行转化求解.(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的平行问题转化为代数运算.【例1】(2024·高一课前预习)在△ABC中,点M,N分别在线段AB,AC上,AM=2MB,AN【变式1-1】(2024·全国·高三专题练习)在四边形ABCD中,AB=DC,N,M是求证:CN=【变式1-2】(2024春·高一课时练习)如图,已知AD,BE,CF是△ABC的三条高,且交于点O,DG⊥BE于点G【变式1-3】(2024·全国·高一专题练习)如图所示,分别在平行四边形ABCD的对角线BD的延长线和反向延长线上取点F和点E,使DF=BE.试用向量方法证明:四边形【题型2用向量解决平面几何中的垂直问题】【方法点拨】用向量法解决平面几何中的垂直问题,一般来说有两种方法.(1)一般向量法:利用向量的运算法则、运算律或性质计算,有时可选取适当的基底(尽量用已知模或夹角的向量作为基底),将题中涉及的向量用基底表示.(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的垂直问题转化为代数运算.【例2】(2024·高二课时练习)如图,在平行四边形ABCD中,点E是AB的中点,F,G是AD,BC的三等分点(AF=23(1)用a,b表示(2)假如a=43【变式2-1】(2024·高一课时练习)用向量方法证明:菱形对角线相互垂直.已知四边形ABCD是菱形,AC,BD是其对角线.求证:AC⊥【变式2-2】(2024·全国·高三专题练习)如图,正方形ABCD的边长为a,E是AB的中点,F是BC的中点,求证:DE⊥AF.【变式2-3】(2024·高二课时练习)如图所示,在等腰直角三角形ACB中,∠ACB=90°,CA=CB,D为BC的中点,E是AB【题型3利用向量求线段间的长度关系】【方法点拨】利用向量学问,结合具体条件,将平面几何中的长度关系进行转化求解.【例3】(2024·高一课时练习)如图,在▱ABCD中,点E,F分别是AD,DC边的中点,BE,BF分别与AC交于R,T两点,你能发觉AR,RT,TC【变式3-1】(2024·高一课时练习)在梯形ABCD中,BC>AD,AD//BC,点E,F分别是BD,【变式3-2】(2024·高一课前预习)如图,在△ABC中,点E为边AB上一点,点F为线段AC延长线上一点,且BEAB=CFAC,连接EF交BC【变式3-3】(2024·高一单元测试)如图,在△OAB中,点C分OA为1:3,点D为OB中点,AD与BC交于P点,延长OP交AB于E,求证:AE【题型4用向量解决夹角问题】【方法点拨】利用向量学问,结合具体条件,利用向量的夹角公式进行转化求解.【例4】(2024春·山东菏泽·高一期末)如图,在△ABC中,已知AC=1,AB=3,∠BAC=60【变式4-1】(2024春·重庆·高一期末)如图,在△ABC中,已知∠BAC=120°,AB=2,AC=4,点D在BC上,且BD=2DC,点(1)求线段AD,BE的长;(2)求∠EOD【变式4-2】(2024春·广东河源·高一阶段练习)已知△ABC是等腰直角三角形,∠B=90°,D是BC边的中点,BE⊥AD,垂足为E,延长BE交AC【变式4-3】(2024·高二课时练习)已知梯形ABCD中,AB // CD,AB=2CD,E为BC的中点,F为BD(1)求λ和μ的值;(2)若AB=22,BC=6,∠ABC=45【题型5用向量解决物理中的相关问题】【方法点拨】平面对量在物理的力学、运动学中应用广泛,用向量处理这些问题时,先依据题意把物理中的相关量用有向线段表示,再利用向量加法的平行四边形法则转化为代数方程来计算.【例5】(2024·高一课时练习)如图,一滑轮组中有两个定滑轮A,B,在从连接点O动身的三根绳的端点处,挂着3个重物,它们所受的重力分别为4N,4N和43【变式5-1】(2024·高一课时练习)已知两个力F1=5i+4j,F2=-2i+j,F1,F(1)F1,F(2)F1,F2的合力【变式5-2】(2024·高一单元测试)如图所示,一条河的两岸平行,河的宽度d=500m,一艘船从A点动身航行到河对岸,船航行速度的大小为|v1|=10km/h,水流速度的大小为(1)当cosθ(2)当船垂直到达对岸时,航行所需时间是否最短?为什么?【变式5-3】(2024·高二课时练习)解决本节起先时的问题:在如图的天平中,左、右两个秤盘均被3根细绳匀整地固定在横梁上.在其中一个秤盘中放入质量为1kg的物品,在另一个秤盘中放入质量为1kg的砝码,天平平衡.3根细绳通过秤盘分担对物品的拉力(拉力分别为F1,F2,F3),若3根细绳两两之间的夹角均为π3,不考虑秤盘和细绳本身的质量,则F1【题型6向量与几何最值】【方法点拨】依据具体条件,利用向量学问,将平面几何中的最值问题进行转化求解即可.【例6】(2024·江苏盐城·模拟预料)如图,已知正方形ABCD的边长为2,过中心O的直线l与两边AB,CD分别交于点M,N.(1)若Q是BC的中点,求QM⋅(2)若P是平面上一点,且满足2OP=λ【变式6-1】(2024春·广西柳州·高一阶段练习)在△ABC中,CA=6,AB=8,∠BAC=(1)求AD⋅(2)若点P满足CP=λCA【变式6-2】(2024·高一课前预习)梯形AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论