吉林省白山市长白县2024年中考二模数学试题含解析_第1页
吉林省白山市长白县2024年中考二模数学试题含解析_第2页
吉林省白山市长白县2024年中考二模数学试题含解析_第3页
吉林省白山市长白县2024年中考二模数学试题含解析_第4页
吉林省白山市长白县2024年中考二模数学试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省白山市长白县2024年中考二模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大 B.S的值减小C.S的值先增大,后减小 D.S的值不变2.下列博物院的标识中不是轴对称图形的是()A. B.C. D.3.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.44.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30° B.60° C.120° D.180°5.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1056.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.7.已知正多边形的一个外角为36°,则该正多边形的边数为().A.12 B.10 C.8 D.68.cos45°的值是(

)A.

B.

C.

D.19.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A. B. C. D.10.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18π B.27π C.π D.45π二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在Rt△ABC中,∠C=90°,AC=8,BC=1.在边AB上取一点O,使BO=BC,以点O为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A、B、C的对应点分别是点A′、B′、C′、),那么△ABC与△A′B′C′的重叠部分的面积是_________.12.若关于的一元二次方程有实数根,则的取值范围是________.13.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.14.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.15.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.16.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.三、解答题(共8题,共72分)17.(8分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.18.(8分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.19.(8分)已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)(1)若关于x的反比例函数y=过点A,求t的取值范围.(2)若关于x的一次函数y=bx过点A,求t的取值范围.(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.20.(8分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.(1)求抛物线解析式;(2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;(3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.21.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数22.(10分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度数;(2)求证:BC是⊙O的切线.23.(12分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.24.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求EG的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2、A【解析】

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误3、B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.4、C【解析】

求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C.【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键5、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.6、D【解析】

根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.7、B【解析】

利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.8、C【解析】

本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°=.故选:C.【点睛】本题考查特殊角的三角函数值.9、C【解析】

先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,

后面一排分别有2个、3个、1个小正方体搭成三个长方体,

并且这两排右齐,故从正面看到的视图为:.

故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.10、B【解析】

先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

先求得OD,AE,DE的值,再利用S四边形ODEF=S△AOF-S△ADE即可.【详解】如图,OA’=OA=4,则OD=OA’=3,OD=3∴AD=1,可得DE=,AE=∴S四边形ODEF=S△AOF-S△ADE=×3×4-××=.故答案为.【点睛】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.12、【解析】

由题意可得,△=9-4m≥0,由此求得m的范围.【详解】∵关于x的一元二次方程x2-3x+m=0有实数根,∴△=9-4m≥0,求得m≤.故答案为:【点睛】本题考核知识点:一元二次方程根判别式.解题关键点:理解一元二次方程根判别式的意义.13、【解析】

坡度=坡角的正切值,据此直接解答.【详解】解:∵,∴坡角=30°.【点睛】此题主要考查学生对坡度及坡角的理解及掌握.14、【解析】

根据圆周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【详解】由图可得,∠BAC=∠BDC,∵⊙O在边长为1的网格格点上,∴BE=3,DB=4,则tan∠BDC==∴tan∠BAC=故答案为【点睛】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.15、2﹣【解析】

过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论【详解】如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S阴影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.16、【解析】

由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.三、解答题(共8题,共72分)17、(1)y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).【解析】

(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;(3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.【详解】(1)过点A作AH⊥x轴于点H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2-x;(2)如图,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴当OP=OC或OP′=2OC时,△POC与△AOE相似,∴OP=,OP′=,∴点P坐标为(0,)或(0,).(3)如图,取Q(,0).连接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是线段AQ的长,最小值为.【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.18、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.【详解】(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,则当t=2时,△DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此时P(2,1);②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合题意,舍去)∴当1<m<4时,P(2,1);类似地可求出当m>4时,P(5,﹣2);当m<1时,P(﹣3,﹣14),综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.19、(1)t≤﹣;(2)t≤3;(3)t≤1.【解析】

(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.

(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围.

(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.【详解】解:(1)把A(a,1)代入y=得到:1=,解得a=1,则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣)2﹣.因为抛物线t=﹣(b﹣)2﹣的开口方向向下,且顶点坐标是(,﹣),所以t的取值范围为:t≤﹣;(2)把A(a,1)代入y=bx得到:1=ab,所以a=,则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+)2+3≤3,故t的取值范围为:t≤3;(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,所以ab=1﹣(a2+b2),则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,故t的取值范围为:t≤1.【点睛】本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.20、(1)抛物线解析式为y=﹣;(2)DF=3;(3)点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【解析】

(1)将点A、C坐标代入抛物线解析式求解可得;(2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.【详解】(1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;(2)如图1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.又∵DC=DE,∴△COD≌△DHE,∴DH=OC.又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如图2,设点D的坐标为(t,0).∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.21、(1)1500;(2)见解析;(3)108°;(3)12~23岁的人数为400万【解析】试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;(2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;(3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;(4)先计算调查中12﹣23岁的人数所占的百分比,再求网瘾人数约为2000万中的12﹣23岁的人数.试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为330÷22%=1500人.故答案为1500;(2)1500

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论