版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年沪科版七年级(下)期末数学试卷
一、选择题(每小题3分,共24分)
1.(3分)下列方程是一元一次方程的是()
A.2x+5=—-3x-2y=6C.三5-xD.x2+2x=0
x2
2.(3分)下列四组数中,是方程4x-y=10的解的是()
A.।x=0B.Jx=3.5c.任=15D,J*=1
(y=-10[y=-4Iy=4{y=6
3.(3分)如果x>y,则下列变形中正确的是()
A.-k〉」yB.J^x<A.yC.3x>5yD.x-3>y-3
2222
4.(3分)解方程曳zL_i望zL时,为了去分母应将方程两边同时乘以()
43
A.12B.10C.9D.4
5.(3分)已知等腰三角形的两边的长分别为3和6,则它的周长为()
A.9B.12C.15D.12或15
6.(3分)下列标志中,可以看作是轴对称图形的是()
7.(3分)如图,EA//DF,AE=DF,要使△AEC/ADFB,只要()
A.AB=CDB.EC=BFC.ZA=/DD.AB=BC
8.(3分)如图,在AABC中,BC边上的高是()
A.CEB.ADC.CFD.AB
二、填空题(每小题3分,共18分)
9.(3分)已知方程2a-5=x+a的解是x=-6,那么a=.
10.(3分)一个数x的2倍减去7的差,得36,列方程为.
1L(3分)装修大世界出售下列形状的地砖:(1)正三角形;(2)正五边形;(3)
正六边形;(4)正八边形;(5)正十边形,若只选购一种地砖镶嵌地面,你有
种选择.
12.(3分)如图,在4ABC中,NACB=120。,将它绕着点C旋转30。后得到△口£(:,
13.(3分)如图所示,请将NA、Nl、N2按从大到小的顺序排列
14.(3分)如图,在RtAABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,
则NDCE的大小为(度).
三、解答题(每小题18分,共24分)
15.(18分)解下列方程或方程组:
(1)x-4=3
(2)2x-l=3x+4
(3)-(x-3)=3(2-5x)
(4)纪L_i=5y-7
41-6
(5)尸4
l3x+y=16
(6)(2x~y=3.
l3x+4y=10
16.(6分)解下列不等式或等式组:
(1)10-3(x+5)W1
2-x<0,①
⑵,三〈生L②,
145,
四、解答题(共54分)
17.(5分)解不等式:―2;+1并在数轴上表示出它的解集.
IIIIIIIIII[)
-5-4-3-2-1012345
18.(5分)如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是
几边形.
19.(6分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套
65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?
20.(6分)如图,AC=AE,NC=NE,Z1=Z2.求证:AABC^AADE.
21.(7分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货
车,已知过去租用这两种货车情况如下:
第一次第二次
甲种货车数量2辆5辆
乙种货车数量3辆6辆
累计运货重量14吨32吨
(1)分别求甲、乙两种货车载重多少吨?
(2)现在租用该公司5辆甲货车和7辆乙货车一次刚好运完这批货物,如果按
每吨付费50元计算,货主应付运费多少元?
22.(7分)如图,它是一个8X10的网格,每个小正方形的边长均为1,每个小
正方形的顶点叫格点,^ABC的顶点均在格点上.
(1)画出^ABC关于直线OM对称的△AiBiJ.
(2)画出4ABC关于点O的中心对称图形4A2B2c2.
(3与4A2B2c2组成的图形是轴对称图形吗?如果是,请画出对称轴.△
AiBiJ与4A2B2c2组成的图形(填"是"或"不是")轴对称图形.
23.(8分)如图,已知点B、E、F、C依次在同一条直线上,AF±BC,DE±BC,
垂足分别为F、E,且AB=DC,BE=CF.试说明AB〃DC.
B
D
24.(10分)如图,已知aABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.
A
管用图督用图
(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线
段CA上由点C向点A运动.
①若点P的运动速度与点Q的运动速度相等,1秒钟时,4BPD与△CQP是否全
等,请说明理由?
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,
能够使4BPD与△CQP全等?
(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B
同时出发,都逆时针沿4ABC的三边运动,直接写出经过多长时间点P与点Q
第一次相遇.
2018-2019学年沪科版七年级(下)期末数学试卷
参考答案与试题解析
一、选择题(每小题3分,共24分)
1.(3分)下列方程是一元一次方程的是()
2
A.2X+5=LB.3X—2y=6C.A-g_xD.x+2x=0
x2
【分析】依据分式方程、二元一次方程、一元一次方程、一元二次方程的定义解
答即可.
【解答】解:A、2x+5=L是分式方程,故A错误;
X
B、3x-2y=6是二元一次方程,故B错误;
C、三=5-x是一元一次方程,故C正确;
2
D、x2+2x=0是一元二次方程,故D错误.
故选:C.
【点评】本题主要考查的是分式方程、二元一次方程、一元一次方程、一元二次
方程的定义,熟练掌握相关定义是解题的关键.
2.(3分)下列四组数中,是方程4x-y=10的解的是()
A.卜=0B.卜=3.5c,b=15D,fx=l
[y=-10[y=-4Iy=4[y=6
【分析】将各选项代入即可得结果.
【解答】解:将A选项代入得4x0-(-10)=10,所以此选项正确;
将B选项代入得4x3.5-(-4)=18,所以此选项错误;
将C选项代入得4x15-4=56,所以此选项错误;
将D选项代入得4x1-6=-2,所以此选项错误,
故选:A.
【点评】本题主要考查了二元一次方程的解,利用代入法是解答此题的关键.
3.(3分)如果x>y,则下列变形中正确的是()
A.-lx>^L.yB.J^x<A.yC.3x>5yD.x-3>y-3
2222
【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等
号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等
式两边乘(或除以)同一个负数,不等号的方向改变.
【解答】解:A、两边都乘以-L,故A错误;
2
B、两边都乘以上,故B错误;
2
C、左边乘3,右边乘5,故C错误;
D、两边都减3,故D正确;
故选:D.
【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答
不等式的问题时,应密切关注“0”存在与否,以防掉进"0”的陷阱.不等式的
基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不
等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)
同一个负数,不等号的方向改变.
4.(3分)解方程组时,为了去分母应将方程两边同时乘以()
43
A.12B.10C.9D.4
【分析】找出各分母的最小公倍数,即可得到结果.
【解答】解:解方程包工-1=三时,为了去分母应将方程两边同时乘以12,
43
故选:A.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
5.(3分)已知等腰三角形的两边的长分别为3和6,则它的周长为()
A.9B.12C.15D.12或15
【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:
两边之和大于第三边去掉一种情况即可.
【解答】解:当3为底时,三角形的三边长为3,6,6,则周长为15;
当3为腰时,三角形的三边长为3,3,6,则不能组成三角形;
故选:C.
【点评】本题考查了等腰三角形的性质以及三角形的三边关系定理,是基础知识
要熟练掌握.注意分类讨论思想的应用.
6.(3分)下列标志中,可以看作是轴对称图形的是()
-c"。
【分析】根据轴对称图形的概念,可得答案.
【解答】解:A、是中心对称图形,故A错误;
B、是中心对称图形,故B正确;
C、是轴对称图形,故C正确;
D、是中心对称图形,故D错误;
故选:C.
【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分
折叠后可重合.
7.(3分)如图,EA//DF,AE=DF,要使△AEC/aDFB,只要()
A.AB=CDB.EC=BFC.ZA=/DD.AB=BC
【分析】四项分别一试即可,要判定△AEC/aDFB,已知AE=DF、ZA=ZD,
要加线段相等,只能是AC=DB,而AB=CD即可得.
【解答】解:■.-AB=CD
..AC=DB
又AE=DF、ZA=ZD
/.AAEC^ADFB
故选:A.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:
SSSsSAS、ASA、AASsHL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有
边的参与,若有两边一角对应相等时,角必须是两边的夹角.
8.(3分)如图,在aABC中,BC边上的高是()
【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的
高,确定出答案即可.
【解答】解:由图可知,过点A作BC的垂线段AD,贝
△ABC中BC边上的高是AD.
【点评】本题主要考查了三角形的角平分线、中线、高线,是基础题,熟记三角
形高的定义是解题的关键.
二、填空题(每小题3分,共18分)
9.(3分)已知方程2a-5=x+a的解是x=-6,那么a=-1.
【分析】把x=-6代入方程2a-5=x+a,即可解答.
【解答】解:x=-6代入方程2a-5=x+a得:2a-5=-6+a,
解得:a=-1,
故答案为:-1.
【点评】本题考查了一元一次方程的解,解决本题的关键是解一元一次方程.
10.(3分)一个数x的2倍减去7的差,得36,列方程为2x-7=36.
【分析】根据文字表述得到等量关系为:x的2倍-7=36,根据此等式列方程即
可.
【解答】解:x的2倍减去7即2X-7,
根据等式可列方程为:2x-7=36.
【点评】本题比较简单,注意代数式的正确书写.
11.(3分)装修大世界出售下列形状的地成:(1)正三角形;(2)正五边形;(3)
正六边形;(4)正八边形;(5)正十边形,若只选购一种地砖镶嵌地面,你有,
种选择.
【分析】由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的
内角度数是否能整除360。,能整除的可以平面镶嵌,反之则不能.
【解答】解:(1)正三角形的每个内角是60。,能整除360。,6个能组成镶嵌;
(2)正五方形的每个内角是108。,不能整除360。,不能组成镶嵌;
(3)正六边形的每个内角是120。,能整除360。,3个能组成镶嵌;
(4)正八边形每个内角是135。,不能整除360。,不能镶嵌;
(5)正十边形每个内角是144。,不能整除360。,不能镶嵌;
故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有2种.
故答案为:2.
【点评】此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数
能整除360。.任意多边形能进行镶嵌,说明它的内角和应能整除360。.
12.(3分)如图,在4ABC中,NACB=120。,将它绕着点C旋转30。后得到△口£(:,
【分析】由旋转的性质得出NDCE=NACB=120。,ZBCE=ZACD=30°,即可得出结
果.
【解答】解:•••△ABC绕点C按顺时针方向旋转后得到△口£(:,
AZDCE=ZACB=120",ZBCE=ZACD=30°,
ZACE=ZACB+ZBCE=150°;
故答案为:150°.
【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距
离相等;对应点与旋转中心的连线段的夹角等于旋转角.
13.(3分)如图所示,请将NA、Nl、Z2按从大到小的顺序排列N2>N1
【分析】根据三角形的外角的性质判断即可.
【解答】解:根据三角形的外角的性质得,Z2>Z1,Z1>ZA
AZ2>Z1>ZA,
故答案为:Z2>Z1>ZA.
【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角大于和它不
相邻的任何一个内角是解题的关键.
14.(3分)如图,在RtAABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,
则NDCE的大小为45(度).
【分析】设NDCE=X,ZACD=y,则NACE=x+y,ZBCE=90°-ZACE=90°-x-y,
根据等边对等角得出NACE=NAEC=x+y,ZBDC=ZBCD=ZBCE+ZDCE=90°-y.然
后在ADCE中,利用三角形内角和定理列出方程x+(90。-y)+(x+y)=180。,
解方程即可求出NDCE的大小.
【解答】解:设NDCE=x,NACD=y,则NACE=x+y,ZBCE=90°-ZACE=90°-x
VAE=AC,
NACE=NAEC=x+y,
VBD=BC,
AZBDC=ZBCD=ZBCE+ZDCE=90°-x-y+x=90°-y.
在ADCE中,VZDCE+ZCDE+ZDEC=180",
,x+(90°-y)+(x+y)=180°,
解得x=45°,
AZDCE=45°.
故答案为:45.
【点评】本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数
列出方程是解题的关键.
三、解答题(每小题18分,共24分)
15.(18分)解下列方程或方程组:
(1)x-4=3
(2)2x-l=3x+4
(3)-(x-3)=3(2-5x)
(4)迎1__声-7
41-6
⑸尸4
l3x+y=16
(6)(2x~y=3
l3x+4y=10
【分析】(1)方程移项合并,把x系数化为1,即可求出解;
(2)方程移项合并,把x系数化为1,即可求出解;
(3)方程去括号,移项合并,把x系数化为1,即可求出解;
(4)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;
(5)方程组利用代入消元法求出解即可;
(6)方程组利用加减消元法求出解即可.
【解答】解:(1)移项得:x=4+3,
解得:x=7;
(2)移项合并得:x=-5;
(3)去括号得:-x+3=6-15x,
移项合并得:14x=3,
解得:x=A;
14
(4)去分母得:9y-3-12=10y-14,
解得:y=-1;
⑸产4①,
13x+y=16②
把①代入②得:3y+12+y=16,
解得:y=l,
把y=l代入①得:x=5,
则方程组的解为,x=5;
ly=l
(6)俨俨3①,
13x+4y=10②
①X4+②得:llx=22,即x=2,
把x=2代入①得:y=l,
则方程组的解为[x=2.
I尸1
【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代
入消元法与加减消元法.
16.(6分)解下列不等式或等式组:
(1)10-3(x+5)W1
r2-x<0,①
⑵兴等.②.
U5
【分析】(1)根据解不等式的方法可以解答本题;
(2)根据解不等式组的方法可以解答本题.
【解答】解:(1)10-3(x+5)W1
去括号,得
10-3x-15W1,
移项及合并同类项,得
-3xW6
系数化为1,得
x2-2
故原不等式的解集是x2-2;
r2-x<0,①
⑵兴邛.②
【45
由①,得x》2,
由②,得xV4,
故原不等式组的解集是2Wx<4.
【点评】本题考查解一元一次不等式组、解一元一次不等式,解题的关键是明确
解一元一次不等式的方•法.
四、解答题(共54分)
(5分)解不等式:->7并在数轴上表示出它的解集.
IIIIIIIIIII)
-5-4-3-2-1012345
【分析】利用不等式的解法,去分母,移项、合并、系数化成1,先求解,再表
示在数轴上.
【解答】解:去分母得,-2x+l>-3,
移项,得-2xN-4,
系数化为1,得,x<2,
在数轴上表示出不等式的解集为:
-5-4-3-2-1012345"
【点评】本题主要考查不等式的解法,需要注意,在数轴上表示时要用实心圆点.
18.(5分)如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是
几边形.
【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360。,则内角
和是6X360。.n边形的内角和可以表示成(n-2)-180%设这个多边形的边数
是n,就得到方程,从而求出边数.
【解答】解:设这个多边形有n条边.
由题意得:(n-2)X180°=360°X6,
解得n=14.
则这个多边形是十四边形.
【点评】本题考查了多边形内角与外角,已知多边形的内角和求边数,可以转化
为方程的问题来解决.
19.(6分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套
65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?
【分析】先设未知数,设还能买词典x本,根据名著的总价+词典的总价W2000,
列不等式,解出即可,并根据实际意义写出答案.
【解答】解:设还能买词典x本,
根据题意得:20X65+40x<2000,
40xW700,
xwg
40
2
答:最多还能买词典17本.
【点评】本题是一元一次不等式的应用,列不等式时要先根据"至少"、"最多"、
“不超过"、"不低于"等关键词来确定问题中的不等关系,本题要弄清数量、单价、
总价和书名,明确数量X单价=总价;在确定最后答案时,要根据实际意义,不
能利用四舍五入的原则取整数值.
20.(6分)如图,AC=AE,ZC=ZE,Z1=Z2.求证:AABC^AADE.
【分析】求出NBAC=NDAE,根据全等三角形的判定定理推出即可.
【解答】证明:
AZl+ZEAC=Z2+ZEAC,
AZBAC=ZDAE,
iSAABC^HAADE中
,ZBAC=ZDAE
<AC=AE
4=NE
.,.△ABC^AADE(ASA).
【点评】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理
进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
21.(7分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货
车,已知过去租用这两种货车情况如下:
第一次第二次
甲种货车数量2辆5辆
乙种货车数量3辆6辆
累计运货重量14吨32吨
(1)分别求甲、乙两种货车载重多少吨?
(2)现在租用该公司5辆甲货车和7辆乙货车一次刚好运完这批货物,如果按
每吨付费50元计算,货主应付运费多少元?
【分析】(1)两个相等关系:第一次2辆甲种货车载重的吨数+3辆乙种货车载
重的吨数=14;第二次5辆甲种货车载重的吨数+6辆乙种货车载重的吨数=32,
根据以上两个相等关系,列方程组求解.
(2)结合(1)的结果,求出5辆甲种货车和7辆乙种货车一次刚好运完的吨数,
再乘以50即得货主应付运费.
【解答】解:(1)设甲种货车每辆载重x吨,乙种货车每辆载重y吨,则
(2x+3y=14
{5x+6y=32
解之得卜=4.
ly=2
答:甲种货车每辆载重4吨,乙种货车载重2吨.
(2)4X5+2X7=34(吨),34X50=1700(元).
答:货主应付运费1700元.
【点评】利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关
系,准确的找到等量关系并用方程组表示出来是解题的关键.
22.(7分)如图,它是一个8X10的网格,每个小正方形的边长均为1,每个小
正方形的顶点叫格点,^ABC的顶点均在格点上.
(1)画出aABC关于直线OM对称的△AiBiCi.
(2)画出4ABC关于点O的中心对称图形4A2B2c2.
(3)ZkAiBiCi与4A2B2c2组成的图形是轴对称图形吗?如果是,请画出对称轴.△
AiBiJ与4A2B2c2组成的图形是(填"是"或"不是")轴对称图形.
【分析】(1)根据^ABC与△AiBiCi关于直线OM对称进行作图即可;
(2)根据△ABC与^AzB2c2关于点O成中心对称进行作图即可;
(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做
轴对称图形,这条直线叫做对称轴.
【解答】解:(1)如图,△AiBiCi即为所求;
(2)如图,4A2B2c2即为所求;
(3)如图,△AiBiJ与4A2B2c2组成的图形是轴对称图形,其对称轴为直线I.
【点评】本题主要考查了利用轴对称变换以及中心对称进行作图,轴对称图形是
针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿
着对称轴折叠时互相重合.把一个图形绕着某个点旋转180。,如果它能够与另
一个图形重合,那么就说这两个图形关于这个点中心对称.
23.(8分)如图,已知点B、E、F、(:依次在同一条直线上,AF±BC,DE±BC,
垂足分别为F、E,且AB=DC,BE=CF.试说明AB〃DC.
D
【分析】首先利用等式的性质可得BF=CE,再用HL定理证明RtAAFB^RtADEC
可得NB=NC,再根据平行线的判定方法可得结论.
【解答】证明:;BE=CF,
;.BE+EF=CF+EF,
即BF=CE,
VAF±BC,DE±BC,
AZAFB=ZDEC=90",
在RtAAFB和RtADEC中J杷=。0,
(EC=BF
ARtAAFB^RtADEC(HL),
AZB=ZC,
,AB〃CD.
【点评】此题主要考查了全等三角形的判定和性质,以及平行线的判定,关键是
掌握全等三角形的判定方法.
24.(10分)如图,已知^ABC中,AB=AC=12cm,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安装工程综合险种2024年保险协议
- 2024跨国劳务输出协议范例
- 2024食堂运营管理承包协议条款细则
- 2024年协议执行保证金协议格式指南
- 2024届THUSSAT北京市清华大学中学高三下学期领军考试数学试题
- 保姆服务协议:老年照护专项
- 2024年专业接驳车配件订购协议格式
- DB11∕T 1650-2019 工业开发区循环化技术规范
- 2024年工程现场工长职务聘用协议
- 2024年财务总监职业协议范本
- 经期延长1课件
- 生物医学传感-生物传感器课件
- 安全警示标示牌整方案
- 三年级数学单位换算练习题
- 同仁堂-老字号的营销典范案例分析课件
- 质量员培训教程(质量标准)课件
- 护理对讲系统施工技术方案
- STCW公约马尼拉修正案(中文译稿草稿)
- 园林空间设计课件
- 医院手术室进修汇报课件
- 提灌站施工组织设计方案word版
评论
0/150
提交评论