辽宁沈阳皇姑区2025届九上数学期末学业水平测试模拟试题含解析_第1页
辽宁沈阳皇姑区2025届九上数学期末学业水平测试模拟试题含解析_第2页
辽宁沈阳皇姑区2025届九上数学期末学业水平测试模拟试题含解析_第3页
辽宁沈阳皇姑区2025届九上数学期末学业水平测试模拟试题含解析_第4页
辽宁沈阳皇姑区2025届九上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁沈阳皇姑区2025届九上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(3,2) B.(3,﹣2) C.(﹣3,2) D.(﹣3,﹣2)2.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.18° B.24° C.30° D.26°3.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤6.一元二次方程的常数项是()A.﹣4 B.﹣3 C.1 D.27.如图,舞台纵深为6米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点处,那么主持人站立的位置离舞台前沿较近的距离约为()A.1.1米 B.1.5米 C.1.9米 D.2.3米8.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数 B.S是R的一次函数C.S是R的二次函数 D.以上答案都不对9.在同一直角坐标系中,反比例函数y=与一次函数y=ax+b的图象可能是()A. B.C. D.10.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次二、填空题(每小题3分,共24分)11.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2,交x轴于A1;将C2绕点A1旋转180°得到C3,交x轴于点A2......如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线上,则m的值为________.12.方程的解是______________.13.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.14.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)15.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.16.若如果x:y=3:1,那么x:(x-y)的值为_______.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中x与y的部分对应值如下表x-1013y-1353那么当x=4时,y的值为___________.18.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于_____.三、解答题(共66分)19.(10分)如图,在某建筑物上,挂着“缘分天注定,悠然在潜山”的宣传条幅,小明站在点处,看条幅顶端,测得仰角为,再往条幅方向前行30米到达点处,看到条幅顶端,测得仰角为,求宣传条幅的长.(注:不计小明的身高,结果精确到1米,参考数据,)20.(6分)如图,射线表示一艘轮船的航行路线,从到的走向为南偏东30°,在的南偏东60°方向上有一点,处到处的距离为200海里.(1)求点到航线的距离.(2)在航线上有一点.且,若轮船沿的速度为50海里/时,求轮船从处到处所用时间为多少小时.(参考数据:)21.(6分)汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:),表示水位高度(单位:),当时,达到警戒水位,开始开闸放水.02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到.22.(8分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.23.(8分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.24.(8分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.(1)填空:点B的坐标为(用含m的代数式表示);(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:①求抛物线的解析式(用含m的代数式表示);②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.25.(10分)二次函数图象过,,三点,点的坐标为,点的坐标为,点在轴正半轴上,且,求二次函数的表达式.26.(10分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD.(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直接利用关于x轴对称点的性质得出符合题意的答案.【详解】解:点A(﹣3,2)关于x轴的对称点A′的坐标为:(﹣3,﹣2),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数.2、B【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.3、C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【解析】试题分析:∵弧长,∴圆心角.故选A.5、C【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C6、A【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)中a、b、c分别是二次项系数、一次项系数、常数项.【详解】解:一元二次方程的常数项是﹣4,故选A.【点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a、b、c分别叫二次项系数,一次项系数,常数项.7、D【分析】根据黄金分割点的比例,求出距离即可.【详解】∵黄金分割点的比例为(米)∴主持人站立的位置离舞台前沿较近的距离约为(米)故答案为:D.【点睛】本题考查了黄金分割点的实际应用,掌握黄金分割点的比例是解题的关键.8、C【解析】根据二次函数的定义,易得S是R的二次函数,故选C.9、D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.二、填空题(每小题3分,共24分)11、-1【解析】每次变化时,开口方向变化但形状不变,则a=1,故开口向上时a=1,开口向下时a=-1;与x轴的交点在变化,可发现规律抛物线Cn与x轴交点的规律是(2n-2,0)和(2n,0),由两点式y=a(x-x1)(x-x2)【详解】由抛物线C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得x1∴与x轴的交点为O(0,0),A(2,0).抛物线C2的开口向上,且与x轴的交点为∴A(2,0)和A1(4,0),则抛物线C2:y=(x-2)(x-4);抛物线C3的开口向下,且与x轴的交点为∴A1(4,0)和A2(6,0),则抛物线C3:y=-(x-4)(x-6);抛物线C4的开口向上,且与x轴的交点为∴A2(6,0)和A3(8,0),则抛物线C4:y=(x-6)(x-8);同理:抛物线C2018的开口向上,且与x轴的交点为∴A2016(4034,0)和A2017(4036,0),则抛物线C2018:y=(x-4034)(x-4036);当x=4035时,y=1×(-1)-1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出第2018段抛物线的解析式.12、,【分析】根据题意先移项,再提取公因式,求出x的值即可.【详解】解:移项得,x(x-3)-x=0,提取公因式得,x(x-3-1)=0,即x(x-4)=0,解得,.故答案为:,.【点睛】本题考查的是解一元二次方程-因式分解法,熟练利用因式分解法解一元二次方程是解答此题的关键.13、【分析】将点(1,3)代入y即可求出k+1的值,再根据k+1=xy解答即可.【详解】∵反比例函数的图象上有一点(1,3),∴k+1=1×3=6,又点(-3,n)在反比例函数的图象上,∴6=-3×n,解得:n=-1.故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.14、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm,依题意有

(50-x)(39-x)=1.

故答案为:.【点睛】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.15、【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=.故答案是:.【点睛】此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.16、【分析】根据x:y=3:1,则可设x=3a,y=a,即可计算x:(x-y)的值.【详解】解:设x=3a,y=a,则x:(x-y)=3a:(3a-a)=,故答案为:.【点睛】本题考查了比的性质,解题的关键是根据已有比例关系,设出x、y的值.17、-1【分析】将表中数值选其中三组代入解析式得方程组,解方程组得到函数解析式,再把x=4代入求值即可.【详解】解:将表中数值选其中三组代入解析式得:解得:所以解析式为:当x=4时,故答案为:-1【点睛】本题考查了待定系数法求二次函数的解析式,根据表中数据求出二次函数解析式是解题的关键.18、15或10【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB、AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【详解】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD-CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.三、解答题(共66分)19、宣传条幅BC的长约为26米.【分析】先根据三角形的外角性质得出,再根据等腰三角形的判定可得BE的长,然后利用的正弦值求解即可.【详解】由题意得米(米)在中,,即(米)答:宣传条幅BC的长约为26米.【点睛】本题考查了等腰三角形的判定、解直角三角形等知识点,熟记正弦值的定义及特殊角的正弦值是解题关键.20、(1)100海里(2)约为1.956小时【分析】(1)过A作AH⊥MN于H.由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH中,得出AH=AM,问题得解;

(2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB是等腰直角三角形,求出BH=AH距离,然后根据时间=路程÷速度即可求解.【详解】解:(1)如图,过作于.∵,∴在直角中,∵,,海里,∴海里.答:点到航线的距离为100海里.(2)在直角中,,由(1)可知,∵∴,∴,∴轮船从处到处所用时间约为小时.答:轮船从处到处所用时间约为1.956小时.【点睛】本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.21、(1)见解析;(2)和;(3)预计水位达到.【分析】根据描点的趋势,猜测函数类型,发现当时,与可能是一次函数关系:当时,与就不是一次函数关系:通过观察数据发现与的关系最符合反比例函数.【详解】(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当时,与可能是一次函数关系:设,把,代入得,解得:,,与的关系式为:,经验证,,都满足,因此放水前与的关系式为:,观察图象当时,与就不是一次函数关系:通过观察数据发现:.因此放水后与的关系最符合反比例函数,关系式为:,所以开闸放水前和放水后最符合表中数据的函数解析式为:和.(3)当时,,解得:,因此预计水位达到.【点睛】此题考查二元一次函数的应用,统计图,解题关键在于根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.22、(1)60;(2)四边形ACFD是菱形.理由见解析.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∠DCE=∠ACB=90°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.23、(1)见解析(2)【分析】(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x-2,由在Rt△ABC中,,可得方程:,解此方程即可求得CB的长,继而求得CE的长.【详解】解:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°∴AC⊥BC∵DC=CB∴AD=AB∴∠B=∠D(2)设BC=x,则AC=x-2,在Rt△ABC中,,∴,解得:(舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E∴CD=CE∵CD=CB,∴CE=CB=.24、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐标为(m,0),AB=1,则点B坐标为(m-1,0);(3)①S△ABP=•AB•yP=3yP=8,即:yP=1,求出点P的坐标为(1+m,1),即可求解;②抛物线对称轴为x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三种情况,讨论求解.【详解】解:(1)A的坐标为(m,0),AB=1,则点B坐标为(m﹣1,0),故答案为(m﹣1,0);(3)①S△ABP=AB•yP=3yP=8,∴yP=1,把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,此时,直线AP表达式中的k值为1,设:直线AP的表达式为:y=x+b,把点A坐标代入上式得:m+b=0,即:b=﹣m,则直线AP的表达式为:y=x﹣m,则点P的坐标为(1+m,1),则抛物线的表达式为:y=a(x﹣m)(x﹣m+1),把点P坐标代入上式得:a(1+m﹣m)(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论