版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角的对边分别为,若.则角的大小为()A. B. C. D.2.已知集合,集合,那么等于()A. B. C. D.3.下列说法正确的是()A.“若,则”的否命题是“若,则”B.在中,“”是“”成立的必要不充分条件C.“若,则”是真命题D.存在,使得成立4.已知锐角满足则()A. B. C. D.5.设集合,集合,则=()A. B. C. D.R6.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是()A.CPI一篮子商品中所占权重最大的是居住B.CPI一篮子商品中吃穿住所占权重超过50%C.猪肉在CPI一篮子商品中所占权重约为2.5%D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%7.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米 B.63厘米 C.69厘米 D.76厘米8.已知m为实数,直线:,:,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件9.若变量,满足,则的最大值为()A.3 B.2 C. D.1010.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.11.已知集合,,则等于()A. B. C. D.12.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件二、填空题:本题共4小题,每小题5分,共20分。13.若函数,其中且,则______________.14.已知向量,,若,则______.15.执行以下语句后,打印纸上打印出的结果应是:_____.16.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有两个实数根,且,证明:.18.(12分)如图,在四棱锥中,是等边三角形,,,.(1)若,求证:平面;(2)若,求二面角的正弦值.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)设直线与曲线交于,两点,求;(Ⅱ)若点为曲线上任意一点,求的取值范围.20.(12分)已知,.(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.21.(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)①求证:四边形是平行四边形.②四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.22.(10分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.2、A【解析】
求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.3、C【解析】
A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故A错.B:在中,,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.4、C【解析】
利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.5、D【解析】试题分析:由题,,,选D考点:集合的运算6、D【解析】
A.从第一个图观察居住占23%,与其他比较即可.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D.易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A.CPI一篮子商品中居住占23%,所占权重最大的,故正确.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.7、B【解析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.8、A【解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.当m≠0时,则l1∥l2⇒,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,则m=1,即“m=1”是“l1∥l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.9、D【解析】
画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.10、C【解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.11、B【解析】
解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.12、B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先化简函数的解析式,在求出,从而求得的值.【详解】由题意,函数可化简为,所以,所以.故答案为:0.【点睛】本题主要考查了二项式定理的应用,以及导数的运算和函数值的求解,其中解答中正确化简函数的解析式,准确求解导数是解答的关键,着重考查了推理与运算能力.14、1【解析】
根据向量加法和减法的坐标运算,先分别求得与,再结合向量的模长公式即可求得的值.【详解】向量,则,则因为即,化简可得解得故答案为:【点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.15、1【解析】
根据程序框图直接计算得到答案.【详解】程序在运行过程中各变量的取值如下所示:是否继续循环ix循环前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循环,所以打印纸上打印出的结果应是:1故答案为:1.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.16、-7【解析】
由题意得AB+【详解】由题意得ABBC+∴AB+【点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析【解析】
(Ⅰ)根据导数的几何意义求解即可.(Ⅱ)求导分析函数的单调性,并构造函数根据单调性分析可得只能在处取得最小值求解即可.(Ⅲ)根据(Ⅰ)(Ⅱ)的结论可知,在上恒成立,再分别设的解为、.再根据不等式的性质证明即可.【详解】(Ⅰ)由题,故.且.故在点处的切线方程为.(Ⅱ)设恒成立,故.设函数则,故在上单调递减且,又在上单调递增.又,即且,故只能在处取得最小值,当时,此时,且在上,单调递减.在上,单调递增.故,满足题意;当时,此时有解,且在上单调递减,与矛盾;当时,此时有解,且在上单调递减,与矛盾;故(Ⅲ).由(Ⅰ),在上单调递减且,又在上单调递增,故最多一根.又因为,,故设的解为,因为,故.所以在递减,在递增.因为方程有两个实数根,故.结合(Ⅰ)(Ⅱ)有,在上恒成立.设的解为,则;设的解为,则.故,.故,得证.【点睛】本题主要考查了导数的几何意义以及根据函数的单调性与最值求解参数值的问题.同时也考查了构造函数结合前问的结论证明不等式的方法.属于难题.18、(1)详见解析(2)【解析】
(1)如图,作,交于,连接.因为,所以是的三等分点,可得.因为,,,所以,因为,所以,因为,所以,所以,因为,所以,所以,因为平面,平面,所以平面.又,平面,平面,所以平面.因为,、平面,所以平面平面,所以平面.(2)因为是等边三角形,,所以.又因为,,所以,所以.又,平面,,所以平面.因为平面,所以平面平面.在平面内作平面.以B点为坐标原点,分别以所在直线为轴,建立如图所示的空间直角坐标系,则,,,所以,,,.设为平面的法向量,则,即,令,可得.设为平面的法向量,则,即,令,可得.所以,则,所以二面角的正弦值为.19、(Ⅰ)6(Ⅱ)【解析】
(Ⅰ)化简得到直线的普通方程化为,,是以点为圆心,为半径的圆,利用垂径定理计算得到答案.(Ⅱ)设,则,得到范围.【详解】(Ⅰ)由题意可知,直线的普通方程化为,曲线的极坐标方程变形为,所以的普通方程分别为,是以点为圆心,为半径的圆,设点到直线的距离为,则,所以.(Ⅱ)的标准方程为,所以参数方程为(为参数),设,,因为,所以,所以.【点睛】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和应用能力.20、(1)证明见解析;(2).【解析】
(1)令,求导,可知单调递增,且,,因而在上存在零点,在此取得最小值,再证最小值大于零即可.(2)根据题意得到在点处的切线的方程①,再设直线与相切于点,有,即,再求得在点处的切线直线的方程为②由①②可得,即,根据,转化为,,令,转化为要使得在上存在零点,则只需,求解.【详解】(1)证明:设,则,单调递增,且,,因而在上存在零点,且在上单调递减,在上单调递增,从而的最小值为.所以,即.(2),故,故切线的方程为①设直线与相切于点,注意到,从而切线斜率为,因此,而,从而直线的方程也为②由①②可知,故,由为正整数可知,,所以,,令,则,当时,为单调递增函数,且,从而在上无零点;当时,要使得在上存在零点,则只需,,因为为单调递增函数,,所以;因为为单调递增函数,且,因此;因为为整数,且,所以.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.21、(1);(2)①证明见解析;②能,.【解析】
(1)根据抛物线的定义,求出,即可求抛物线C的方程;(2)①设,,写出切线的方程,解方程组求出点的坐标.设点,直线AB的方程,代入抛物线方程,利用韦达定理得到点的坐标,写出点的坐标,,可得线段相互平分,即证四边形是平行四边形;②若四边形为矩形,则,求出,即得点Q的坐标.【详解】(1)因为,所以,即抛物线C的方程是.(2)①证明:由得,.设,,则直线PA的方程为(ⅰ),则直线PB的方程为(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.设点,则直线AB的方程为.由得,则,,所以,所以线段PQ被x轴平分,即被线段CD平分.在①中,令解得,所以,同理得,所以线段CD的中点坐标为,即,又因为直线PQ的方程为,所以线段CD的中点在直线PQ上,即线段CD被线段PQ平分.因此,四边形是平行四边形.②由①知,四边形是平行四边形.若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度房地产交易平台服务合同
- 二零二四年电子产品生产销售合作协议
- 二零二四年度版权转让与许可使用协议
- 2024年度企业信息化改造合同3篇
- 抵押汽车还款计划调整2024年度合同2篇
- 二零二四年度租赁物购买合同购买价格及支付方式
- 二零二四年度原材料供应商独家合作协议
- 2024年度存量房买卖及居间服务合同
- 场地租赁与装修合同(04版)
- 场地平整合同
- 幼儿园财务整改报告
- 保姆雇佣合同照顾老人免责协议书
- 神话故事吴刚伐桂
- 中医的简介完整版本
- 《抽水蓄能电站厂用电保护整定计算导则》
- 视频监控系统关键技术标准规范
- MOOC 思辨式英文写作-南开大学 中国大学慕课答案
- 弓形虫病课件
- 年产30万吨煤焦油深加工工程项目可行性研究报告
- 2024年辽宁工程技术大学马克思主义基本原理概论(期末考试题+答案)0
- 围手术期血糖管理指南
评论
0/150
提交评论