版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天水市重点中学2025届九上数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等2.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图象表示,大致正确的是()A. B. C. D.3.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为()A.1 B.2 C.3 D.74.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤5.sin45°的值等于()A.12 B.22 C.36.在平面直角坐标系内,将抛物线先向右平移个单位,再向下平移个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是()A. B. C. D.7.已知二次函数y=x2+2x-m与x轴没有交点,则m的取值范围是()A.m<-1 B.m>-1 C.m<-1且m≠0 D.m>-1且m≠08.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A.若方程有一根为1,则a+b+c=0B.若a,c异号,则方程必有解C.若b=0,则方程两根互为相反数D.若c=0,则方程有一根为09.若点,均在反比例函数的图象上,则与关系正确的是()A. B. C. D.10.二次函数y=ax2+bx+c的y与x的部分对应值如下表:x…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上 B.抛物线与y轴交于负半轴C.当x=﹣1时y>0 D.方程ax2+bx+c=0的负根在0与﹣1之间11.一元二次方程x2-2x+1=0的根的情况是()A.只有一个实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.没有实数根12.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若,,以顶点为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A. B. C. D.二、填空题(每题4分,共24分)13.已知直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,过点D(0,-1)的直线分别交、于点E、F,若△BDE与△BDF的面积相等,则k=____.14.已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米,该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式)为________.15.将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为_______________________.16.如图,在平面直角坐标系中,已知点,为平面内的动点,且满足,为直线上的动点,则线段长的最小值为________.17.二次函数的最小值是____.18.已知二次函数,与的部分对应值如下表所示:…-101234……61-2-3-2m…下面有四个论断:①抛物线的顶点为;②;③关于的方程的解为;④.其中,正确的有___________________.三、解答题(共78分)19.(8分)如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为1.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)求反比例函数y=与直线y=x+m的函数关系式(2)求梯形ABCD的面积.20.(8分)如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求的最大值,并求出此时⊙O的半径.21.(8分)如图,正三角形ABC内接于⊙O,若AB=4cm,求⊙O的直径及正三角形ABC的面积.22.(10分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.23.(10分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率.24.(10分)蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).25.(12分)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?26.如图,点E是弧BC的中点,点A在⊙O上,AE交BC于点D.(1)求证:;(2)连接OB,OC,若⊙O的半径为5,BC=8,求的面积.
参考答案一、选择题(每题4分,共48分)1、D【详解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.2、A【分析】选取4时和8时的温度,求解温度差,用排除法可得出选项.【详解】由图形可知,骆驼0时温度为:37摄氏度,4时温度为:35℃,8时温度为:37℃∴当t=4时,y=37-35=2当t=8时,y=37-35=2即在t、y的函数图像中,t=4对应的y为2,t=8对应的y为2满足条件的只有A选项故选:A【点睛】本题考查函数的图像,解题关键是根据函数的意义,确定函数图像关键点处的数值.3、C【解析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0解得b=1.故选C.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4、C【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C5、B【分析】根据特殊角的三角函数值即可求解.【详解】sin45°=22故选B.【点睛】错因分析:容易题.失分的原因是没有掌握特殊角的三角函数值.6、B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【详解】抛物线的顶点坐标为(0,−1),∵向右平移个单位,再向下平移个单位,∴平移后的抛物线的顶点坐标为(2,−4).故选B.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7、A【分析】函数y=x2+2x-m的图象与x轴没有交点,用根的判别式:△<0,即可求解.【详解】令y=0,即:x2+2x-m=0,△=b2−4ac=4+4m<0,即:m<-1,故选:A.【点睛】本题考查的是二次函数图象与x轴的交点,此类题目均是利用△=b2−4ac和零之间的关系来确定图象与x轴交点的数目,即:当△>0时,函数与x轴有2个交点,当△=0时,函数与x轴有1个交点,当△<0时,函数与x轴无交点.8、C【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;B.若a、c异号,则△=,∴方程必有解,故B正确;C.若b=1,只有当△=时,方程两根互为相反数,故C错误;D.若c=1,则方程变为,必有一根为1.故选C.【点睛】本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.9、C【分析】将点,代入求解,比较大小即可.【详解】解:将点,代入解得:;∴故选:C【点睛】本题考查反比例函数解析式,正确计算是本题的解题关键.10、D【分析】根据表中的对应值,求出二次函数的表达式即可求解.【详解】解:选取,,三点分别代入得解得:∴二次函数表达式为∵,抛物线开口向下;∴选项A错误;∵函数图象与的正半轴相交;∴选项B错误;当x=-1时,;∴选项C错误;令,得,解得:,∵,方程的负根在0与-1之间;故选:D.【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.11、B【解析】△=b2-4ac=(-2)2-4×1×1=0,∴原方程有两个相等的实数根.故选B.【点睛】,本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12、A【分析】由题意可知C(0,0),且过点(2,3),设该抛物线的解析式为y=ax2,将两点代入即可得出a的值,进一步得出解析式.【详解】根据题意,得该抛物线的顶点坐标为C(0,0),经过点(2,3).设该抛物线的解析式为y=ax2.3=a22.a=.该抛物线的解析式为y=x2.故选A.【点睛】本题考查了二次函数的应用,根据题意得出两个坐标是解题的关键.二、填空题(每题4分,共24分)13、【分析】先利用一次函数图像相关求出A、B、C的坐标,再根据△BDE与△BDF的面积相等,得到点E、F的横坐标相等,从而进行分析即可.【详解】解:由直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,求出A、B、C的坐标分别为,将点D(0,-1)代入得到,又△BDE与△BDF的面积相等,即知点E、F的横坐标相等,且直线分别交、于点E、F,可知点E、F为关于原点对称,即知坡度为45°,斜率为.故k=.【点睛】本题考查一次函数图像性质与几何图形的综合问题,熟练掌握一次函数图像性质以及等面积三角形等底等高的概念进行分析是解题关键.14、【分析】根据油箱的总量固定不变,利用每千米耗油0.1升乘以700千米即可得到油箱的总量,故可求解.【详解】依题意得油箱的总量为:每千米耗油0.1升乘以700千米=70升∴轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式)为故答案为:.【点睛】此题主要考查列函数关系式,解题的关键是根据题意找到等量关系列出关系式.15、y=-x2+5【分析】根据二次函数的图像平移方法“左加右减,上加下减”可直接进行求解.【详解】由将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为;故答案为.【点睛】本题主要考查二次函数的图像平移,熟练掌握二次函数的图像平移方法是解题的关键.16、【分析】由直径所对的圆周角为直角可知,动点轨迹为以中点为圆心,长为直径的圆,求得圆心到直线的距离,即可求得答案.【详解】∵,∴动点轨迹为:以中点为圆心,长为直径的圆,∵,,∴点M的坐标为:,半径为1,过点M作直线垂线,垂足为D,交⊙D于C点,如图:此时取得最小值,∵直线的解析式为:,∴,∴,∵,∴,∴最小值为,故答案为:.【点睛】本题考查了点的轨迹,圆周角定理,圆心到直线的距离,正确理解点到直线的距离垂线段最短是正确解答本题的关键.17、2【分析】根据题意,函数的解析式变形可得,据此分析可得答案.【详解】根据题意,,
可得:当x=1时,y有最小值2;【点睛】本题考查二次函数的性质,涉及函数的最值,属于基础题.18、①③.【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,其中,正确的有.①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.三、解答题(共78分)19、(1)y=,y=x-4(2)s=6.5【解析】考点:反比例函数综合题.分析:(1)由于反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),则把A(6,2)分别代入两个解析式可求出k与b的值,从而确定反比例函数y=与直线y=x+m的函数关系式;(2)先把点A的横坐标为2,点B的横坐标为1代入y=x-4中得到对应的纵坐标,则可确定A点坐标为(2,-2),点B的坐标为(1,-1),由AD、BC平行于y轴可得点D的横坐标为2,点C的横坐标为1,然后把它们分别代入y=中,可确定D点坐标为(2,6),点C的坐标为(1,4),然后根据梯形的面积公式计算即可.解:(1)∵点P(6,2)在反比例函数y=的图象上,∴k=6×2=12,∴反比例函数的解析式为y=;∵点P(6,2)在直线y=x+m上,∴6+m=2,解得m=-4,∴直线的解析式为y=x-4;(2)∵点A、B在直线y=x-4上,∴当x=2时,y=2-4=-2,当x=1时,y=1-4=-1,∴A点坐标为(2,-2),点B的坐标为(1,-1),又∵AD、BC平行于y轴,∴点D的横坐标为2,点C的横坐标为1,而点D、C为反比例函数y=的图象上,∴当x=2,则y=6,当x=1,则y=4,∴D点坐标为(2,6),点C的坐标为(1,4),∴DA=6-(-2)=8,CB=4-(-1)=5,∴梯形ABCD的面积=×(8+5)×1=.20、(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①7,②最大值为,半径为【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE=BD,①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;②先求出CD=7,再将AD+BD=14,CD=7代入,化简得出﹣(AD﹣)2+,进而求出AD,最后用勾股定理求出AB即可得出结论.【详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=7,故答案为7;②∵AD+BD=14,∴CD=7,∴=AD•(BD+×7)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣)2+,∴当AD=时,的最大值为,∵AD+BD=14,∴BD=14﹣=,在Rt△ABD中,根据勾股定理得,AB=,∴⊙O的半径为OA=AB=.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.21、⊙O的直径为8cm,正三角形ABC的面积为12cm2【分析】根据圆内接正三角形的性质即可求解.【详解】解:如图所示:连接CO并延长与AB交于点D,连接AO,∵点O是正三角形ABC的外心,∴CD⊥AB,∠OAD=30°,设OD=x,则,根据勾股定理,得,解得x=4,则x=2,∴半径OA=4cm,直径为8cm.∴CD=3x=6,∴.答:⊙O的直径为8cm;正三角形ABC的面积为12cm2【点睛】本题考查了三角形的外接圆与外心、等边三角形的性质,解决本题的关键是掌握圆内接正三角形的性质.22、(1)①“匀称中线”是BE,它是AC边上的中线,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“匀称中线”.理由见解析.【分析】(1)①先作出Rt△ABC的三条中线AD、BE、CF,然后利用匀称中线的定义分别验证即可得出答案;②设AC=2a,利用勾股定理分别把BC,AB的长度求出来即可得出答案.(2)由②知:AC:AD:CD=,设AC=,则AD=2a,CD=,过点C作CH⊥AB,垂足为H,利用的面积建立一个关于a的方程,解方程即可求出CD的长度;假设CM是△ACD的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,②设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=(2)由旋转可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“匀称三角形”.由②知:AC:AD:CD=设AC=,则AD=2a,CD=,如图②,过点C作CH⊥AB,垂足为H,则∠AHC=90°,∵∠BAC=45°,∴∵解得a=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年乙酮项目提案报告范稿
- 2024年台站测风仪项目发展计划
- 2024年现场显示仪表项目合作计划书
- 以货易货合同范本
- 代理杂志合同范本
- 冰霜维修合同范本
- 内蒙古乌海市(2024年-2025年小学五年级语文)人教版质量测试(下学期)试卷及答案
- 内蒙古乌兰察布市(2024年-2025年小学五年级语文)统编版小升初真题((上下)学期)试卷及答案
- 220kV输电线路施工合同评估标准
- 环境保护安全考核制度
- 2024年档案管理中级考试试卷及答案发布
- 外国新闻传播史 课件 第二十章 澳大利亚的新闻传播事业
- 妊娠期及产褥期静脉血栓栓塞症预防和诊治试题及答案
- 好的六堡茶知识讲座
- 环境科学大学生生涯发展报告
- 钢筋优化技术创效手册(2022年)
- 医学课件指骨骨折
- 拜占庭历史与文化智慧树知到期末考试答案2024年
- 2024年物流行业全面培训资料
- 酒店式公寓方案
- (2024版)初中八年级生物备考全攻略
评论
0/150
提交评论