2025届山西省晋中市名校九年级数学第一学期期末复习检测试题含解析_第1页
2025届山西省晋中市名校九年级数学第一学期期末复习检测试题含解析_第2页
2025届山西省晋中市名校九年级数学第一学期期末复习检测试题含解析_第3页
2025届山西省晋中市名校九年级数学第一学期期末复习检测试题含解析_第4页
2025届山西省晋中市名校九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省晋中市名校九年级数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二次函数化为的形式,结果正确的是()A. B.C. D.2.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下列方程中正确的是()A. B.C. D.3.已知点都在反比例函数的图像上,那么()A. B. C. D.的大小无法确定4.已知函数的图象与x轴有交点.则的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠35.一元二次方程x2+x=0的根是()A.x1=0,x2=1 B.x1=0,x2=﹣1 C.x1=x2=0 D.x1=x2=16.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数49425172232081669833329根据列表,可以估计出m的值是()A.8 B.16 C.24 D.327.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. B. C. D.8.已知函数的部分图像如图所示,若,则的取值范围是()A. B. C. D.9.若,则的值是()A. B. C. D.010.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点二、填空题(每小题3分,共24分)11.如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的横坐标是_____12.如图,在直角坐标系中,已知点,,,,对述续作旋转变换,依次得、、、...,则的直角顶点的坐标为________.13.已知x=﹣1是方程x2﹣2mx﹣3=0的一个根,则该方程的另一个根为_____.14.如图,正六边形ABCDEF中的边长为6,点P为对角线BE上一动点,则PC的最小值为_______.15.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.当y=﹣1时,n=_____.16.已知,是抛物线上两点,该抛物线的解析式是__________.17.如图,分别以四边形ABCD的各顶点为圆心,以1长为半径画弧所截的阴影部分的面积的和是________.18.如图,的半径为,的面积为,点为弦上一动点,当长为整数时,点有__________个.三、解答题(共66分)19.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图法或列表法求出小颖参加比赛的概率;(2)你认为游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.20.(6分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:速度v(千米/小时)流量q(辆/小时)(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)①;②;③(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?21.(6分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;线段OD的长为.②求∠BDC的度数;(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.22.(8分)在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.(1)当抛物线经过点A时,顶点P的坐标为;(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.①如图1,连接QA、QC,求△QAC的面积最大值;②如图2,若∠CBQ=45°,请求出此时点Q坐标.23.(8分)元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.24.(8分)垃圾分类是必须要落实的国家政策,环卫部门要求垃圾要按可回收物,有害垃圾,餐厨垃圾,其它垃圾四类分别装袋,投放.甲投放了一袋垃圾,乙投放了两袋垃圾(两袋垃圾不同类).(1)直接写出甲投放的垃圾恰好是类垃圾的概率;(2)用树状图求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.25.(10分)在一个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字.(1)从中随机摸出一个球,求这个球上数字是奇数的概率是;(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)26.(10分)用适当的方法解方程(1)4(x-1)2=9(2)

参考答案一、选择题(每小题3分,共30分)1、A【分析】将选项展开后与原式对比即可;【详解】A:,故正确;B:,故错误;C:,故错误;D:,故错误;故选A.【点睛】本题主要考查了二次函数的三种形式,掌握二次函数的三种形式是解题的关键.2、A【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),先表示出第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于a%的方程.【详解】解:当猪肉第一次提价时,其售价为;当猪肉第二次提价后,其售价为故选:.【点睛】本题考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.3、C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m和n的大小关系.【详解】解:∵点A(m,1)和B(n,3)在反比例函数(k>0)的图象上,

1<3,

∴m>n.

故选:C.【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.4、B【解析】试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.5、B【分析】把一元二次方程化成x(x+1)=0,然后解得方程的根即可选出答案.【详解】解:∵一元二次方程x2+x=0,∴x(x+1)=0,∴x1=0,x2=−1,故选B.【点睛】本题考查了因式分解法求一元二次方程的根.6、C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于,由题意得:,解得:m=24,故选:C.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率,关键是根据黑球的频率得到相应的等量关系.7、A【解析】列表得:红黄蓝红(红,红)(黄,红)(蓝,红)黄(红,黄)(黄,黄)(蓝,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为.故选A.8、C【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,1),∴抛物线与x轴的另一个交点为(−3,1),∴当−3<x<1时,y>1.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.9、D【分析】设,则a=2k,b=3k,代入式子化简即可.【详解】解:设,∴a=2k,b=3k,∴==0,故选D.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.10、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【详解】已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.【点睛】本题考查三角形外接圆圆心的确定,属基础题.二、填空题(每小题3分,共24分)11、【分析】根据函数解析式求得A(3,1),B(1,-3),得到OA=3,OB=3根据勾股定理得到AB=6,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=2,根据相似三角形的性质即可得到结论.【详解】∵直线交x轴于点A,交y轴于点B,

∴令x=1,得y=-3,令y=1,得x=3,

∴A(3,1),B(1.-3),

∴OA=3,OB=3,

∴AB=6,

设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,

∵∠ADP=∠AOB=91°,∠PAD=∠BAO,

∴△APD∽△ABO,

∴,

∴,

∴AP=2,

∴OP=3-2或OP=3+2,

∴P(3-2,1)或P(3+2,1),

故答案为:.【点睛】本题考查了切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并进行分类讨论是解题的关键.12、(1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【详解】由题意可得,

△OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),

∴OA=3,OB=4,∠BOA=90°,∴,∴旋转到第三次时的直角顶点的坐标为:(12,0),

∵301÷3=100…1

∴旋转第301次的直角顶点的坐标为:(1200,0),

故答案为:(1200,0).【点睛】本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键.13、1【分析】根据根与系数的关系即可求出答案.【详解】解:设另外一个根为x,由根与系数的关系可知:﹣x=﹣1,∴x=1,故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,熟知根与系数的关系是解题的关键.14、.【分析】如图,过点C作CP⊥BE于P,可得CG为PC的最小值,由ABCDEF是正六边形,根据多边形内角和公式可得∠GBC=60°,进而可得∠BCG=30°,根据含30°角的直角三角形的性质及勾股定理即可求出PC的长.【详解】如图,过点C作CG⊥BE于G,∵点P为对角线BE上一动点,∴点P与点G重合时,PC最短,即CG为PC的最小值,∵ABCDEF是正六边形,∴∠ABC==120°,∴∠GBC=60°,∴∠BCG=30°,∵BC=6,∴BG=BC=3,∴CG===.故答案为:【点睛】本题考查正六边形的性质、含30°角的直角三角形的性质及勾股定理,根据垂线段最短得出点P的位置,并熟练掌握多边形内角和公式是解题关键.15、-1.【分析】首先根据题意,可得:x2+2x=m,2x+3=n,m+n=y;然后根据y=﹣1,可得:x2+2x+2x+3=﹣1,据此求出x的值是多少,进而求出n的值是多少即可.【详解】根据题意,可得:x2+2x=m,2x+3=n,m+n=y,∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案为:﹣1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的解法是解题的关键.16、【分析】将A(0,3),B(2,3)代入抛物线y=-x2+bx+c的解析式,可得b,c,可得解析式.【详解】∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,∴代入得,解得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3.故答案为:y=-x2+2x+3.【点睛】本题主要考查了待定系数法求解析式,利用代入法解得b,c是解答此题的关键.17、【分析】根据四边形内角和定理得图中四个扇形正好构成一个半径为1的圆,因此其面积之和就是圆的面积.【详解】解:∵图中四个扇形的圆心角的度数之和为四边形的四个内角的和,且四边形内角和为360°,∴图中四个扇形构成了半径为1的圆,∴其面积为:πr2=π×12=π.故答案为:π.【点睛】此题主要考查了四边形内角和定理,扇形的面积计算,得出图中阴影部分面积之和是半径为1的圆的面积是解题的关键.18、4【分析】从的半径为,的面积为,可得∠AOB=90°,故OP的最小值为OP⊥AB时,为3,最大值为P与A或B点重合时,为6,故,当长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.【详解】∵的半径为,的面积为∴∠AOB=90°又OA=OB=6∴AB=当OP⊥AB时,OP有最小值,此时OP=AB=当P与A或B点重合时,OP有最大值,为6,故当OP长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.故答案为:4【点睛】本题考查的是圆的对称性及最大值、最小值问题,根据“垂线段最短”确定OP的取值范围是关键.三、解答题(共66分)19、(1)P(小颖去)=;(2)不公平,见解析.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【详解】(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.20、(1)答案为③;(2)v=30时,q达到最大值,q的最大值为1;(3)84<k≤2【分析】(1)根据一次函数,反比例函数和二次函数的性质,结合表格数据,即可得到答案;(2)把二次函数进行配方,即可得到答案;(3)把v=12,v=18,分别代入二次函数解析式,求出q的值,进而求出对应的k值,即可得到答案.【详解】(1)∵,q随v的增大而增大,∴①不符合表格数据,∵,q随v的增大而减小,∴②不符合表格数据,∵,当q≤30时,q随v的增大而增大,q≥30时,q随v的增大而减小,∴③基本符合表格数据,故答案为:③;(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1,且﹣2<0,∴当v=30时,q达到最大值,q的最大值为1.答:当该路段的车流速度为30千米/小时,流量达到最大,最大流量是1辆/小时.(3)当v=12时,q=﹣2×122+120×12=1152,此时k=1152÷12=2,当v=18时,q=﹣2×182+120×18=1512,此时k=1512÷18=84,∴84<k≤2.答:当84<k≤2时,该路段将出现轻度拥堵.【点睛】本题主要考查二次函数的实际应用,理解二次函数的性质,是解题的关键.21、(1)①,4;②;(2),证明见解析.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;②由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【详解】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;∵旋转至,∴,,,∴为等边三角形∴,,故答案为:60°;4②在中,,,,∵∴∴为直角三角形,,∴(2)时,,理由如下:∵绕点顺时针旋转后得到,∴,,,∴为等腰直角三角形,∴∵当时,为直角三角形,,∴,即∴当满足时,.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判断与性质和勾股定理的逆定理.22、(1)(﹣1,4);(2)①;②Q(﹣,).【分析】(1)将点A坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q作y轴的平行线交AC于点N,先求出直线AC的解析式,点Q(x,﹣x2﹣2x+3),则点N(x,x+3),则△QAC的面积S=×QN×OA=﹣x2﹣x,然后根据二次函数的性质即可求解;②tan∠OCB==,设HM=BM=x,则CM=3x,BC=BM+CM=4x=,解得:x=,CH=x=,则点H(0,),同理可得:直线BH(Q)的表达式为:y=-x+,即可求解.【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q作y轴的平行线交AC于点N,如图1,设直线AC的解析式为y=kx+b,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,,解得,∴直线AC的表达式为:y=x+3,设点Q(x,﹣x2﹣2x+3),则点N(x,x+3),△QAC的面积S=QN×OA=(﹣x2﹣2x+3﹣x﹣3)×3=﹣x2﹣x,∵﹣<0,故S有最大值为:;②如图2,设直线BQ交y轴于点H,过点H作HM⊥BC于点M,tan∠OCB==,设HM=BM=x,则CM=3x,BC=BM+CM=4x=,解得:x=,CH=x=,则点H(0,),同直线AC的表达式的求法可得直线BH(Q)的表达式为:y=﹣x+…②,联立①②并解得:﹣x2﹣2x+3=﹣x+,解得x=1(舍去)或﹣,故点Q(﹣,).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论