2024届云南省重点中学十校联考最后数学试题含解析_第1页
2024届云南省重点中学十校联考最后数学试题含解析_第2页
2024届云南省重点中学十校联考最后数学试题含解析_第3页
2024届云南省重点中学十校联考最后数学试题含解析_第4页
2024届云南省重点中学十校联考最后数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省重点中学十校联考最后数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4C.1或-4 D.1或42.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2A.1B.2C.3D.44.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.125.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=6.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于()A. B. C. D.7.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B.2 C. D.8.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2.其中说法正确的有()A.②③④ B.①②③ C.①④ D.①②④9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F,S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.下列图形中,哪一个是圆锥的侧面展开图?A. B. C. D.11.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体 B.球 C.圆锥 D.圆柱体12.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)14.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.15.把多项式x3﹣25x分解因式的结果是_____16.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.17.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.18.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)化简求值:,其中x是不等式组的整数解.20.(6分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数y=x+1图象上的概率.21.(6分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).22.(8分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.23.(8分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.24.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.25.(10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.26.(12分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.27.(12分)计算:4cos30°﹣+20180+|1﹣|

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题解析:∵x=-2是关于x的一元二次方程的一个根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故选A.点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2、C【解析】

根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-b2a=-3根据函数与x轴有两个交点可得:b2故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.3、C【解析】①根据图象知道:a<1,c>1,∴ac<1,故①正确;②∵顶点坐标为(1/2,1),∴x="-b/2a"="1/2",∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2,1),∴4ac-b24a其中正确的是①②④.故选C4、B【解析】试题解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,综上,△ABC的周长为11或1.故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.5、B【解析】A.y=-4x+5是一次函数,故此选项错误;B.

y=x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.

y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;D.

y=是组合函数,故此选项错误.故选B.6、A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.∴,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.7、C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.8、D【解析】

根据图象得出a<0,a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(,y2)到对称轴的距离即可判断④.【详解】∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y轴的交点在y轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=,∴a=-b,∴b>0,∴abc<0,故①正确;∵a=-b,∴a+b=0,故②正确;把x=2代入抛物线的解析式得,4a+2b+c=0,故③错误;∵,故④正确;故选D..【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.9、D【解析】

先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.【详解】解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=1.故选D.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10、B【解析】

根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.11、D【解析】

本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.12、A【解析】

原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、40【解析】

利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案为40.【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.14、x>﹣1.【解析】

一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.【详解】当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.故答案为:x>﹣1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.详解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案为x(x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.16、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.17、1.2×10﹣1.【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:12纳米=12×0.000000001米=1.2×10−1米.故答案为1.2×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、1【解析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【解析】

先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.【详解】原式=÷=•=,解不等式组,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.20、(1)见解析;(1)13【解析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.试题解析:(1)画树状图:或列表如下:∴点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,∴P(点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.21、39米【解析】

过点A作AE⊥CD,垂足为点E,在Rt△ADE中,利用三角函数求出的长,在Rt△ACE中,求出的长即可得.【详解】解:过点A作AE⊥CD,垂足为点E,由题意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度约为39米.22、(1)见解析(2)见解析【解析】

(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;

(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,

∴AF=FG=GC.

又∵点D是边AB的中点,

∴DH∥BG.

同理:EH∥BF.

∴四边形FBGH是平行四边形,

连结BH,交AC于点O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四边形FBGH是菱形;

(2)∵四边形FBGH是平行四边形,

∴BO=HO,FO=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四边形ABCH是平行四边形.

∵AC⊥BH,AB=BC,

∴四边形ABCH是正方形.【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.23、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解析】

(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人,从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.24、(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.25、解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):(以下过程同“解法一”)【解析】

试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论